9129767 C3JRS8EW 1 apa 50 date desc year Tan, J. 18 https://jit079.scrippsprofiles.ucsd.edu/wp-content/plugins/zotpress/
%7B%22status%22%3A%22success%22%2C%22updateneeded%22%3Afalse%2C%22instance%22%3Afalse%2C%22meta%22%3A%7B%22request_last%22%3A0%2C%22request_next%22%3A0%2C%22used_cache%22%3Atrue%7D%2C%22data%22%3A%5B%7B%22key%22%3A%22R2952FC5%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Barnard%20et%20al.%22%2C%22parsedDate%22%3A%222024-08-05%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBarnard%2C%20A.%2C%20Boss%2C%20E.%2C%20Ha%26%23xEB%3Bntjens%2C%20N.%2C%20Orrico%2C%20C.%2C%20Chamberlain%2C%20P.%2C%20Frouin%2C%20R.%2C%20Mazloff%2C%20M.%2C%20%26amp%3B%20%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%20%282024%29.%20A%20float-based%20Ocean%20color%20vicarious%20calibration%20program.%20%3Ci%3EFrontiers%20in%20Remote%20Sensing%3C%5C%2Fi%3E%2C%20%3Ci%3E5%3C%5C%2Fi%3E%2C%201373540.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2024.1373540%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2024.1373540%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20float-based%20Ocean%20color%20vicarious%20calibration%20program%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%22%2C%22lastName%22%3A%22Barnard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuel%22%2C%22lastName%22%3A%22Boss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nils%22%2C%22lastName%22%3A%22Ha%5Cu00ebntjens%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cristina%22%2C%22lastName%22%3A%22Orrico%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%22%2C%22lastName%22%3A%22Chamberlain%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%22%2C%22lastName%22%3A%22Frouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Tan%22%7D%5D%2C%22abstractNote%22%3A%22Ocean%20color%20satellites%20require%20a%20procedure%20known%20as%20System%20Vicarious%20Calibration%20%28SVC%29%20after%20launch%20as%20the%20pre-launch%20and%20on-orbit%20calibration%20accuracy%20is%20insufficient.%20The%20current%20approach%20for%20determination%20of%20post-launch%20SVC%20uses%20a%20single%20fixed%20measurement%20location%20and%20may%20be%20susceptible%20to%20unexpected%20biases%20in%20satellite%20processing%20algorithms.%20Here%20we%20describe%20a%20novel%20SVC%20program%20which%20is%20based%20on%20a%20high%20resolution%20and%20high%20accuracy%20radiometric%20system%20integrated%20with%20an%20autonomous%20profiling%20float%20%28providing%20a%20buoyancy%20engine%2C%20physical%20observations%2C%20and%20communication%29.%20This%20float%20%2B%20radiometer%20%28HyperNav%29%20system%20can%20be%20shipped%20via%20air%2C%20land%2C%20ocean%20and%20is%20deployable%20from%20small%20boats.%20This%20SVC%20program%20relies%20on%20multiple%20deployment%20sites%20with%20associated%20facilities%20to%20collect%20a%20significant%20amount%20of%20SVC%20quality%20data%20in%20a%20relatively%20short%20time.%20It%20has%20centralized%20logistics%20and%20command-and-control%20centers%20ensuring%20easy%20access%20to%20information%20regarding%20the%20status%20of%20each%20asset%20and%20to%20ensure%20floats%20stay%20within%20a%20certain%20ocean%20area.%20The%20development%20of%20the%20program%20has%20been%20associated%20with%20the%20launch%20of%20NASA%5Cu2019s%20PACE%20satellite%20and%20has%20been%20executed%20by%20academic%20institutions%20in%20collaboration%20with%20an%20industrial%20partner.%20Other%20approaches%20for%20a%20future%20float-based%20operational%20SVC%20program%20are%20discussed.%22%2C%22date%22%3A%222024-8-5%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3389%5C%2Ffrsen.2024.1373540%22%2C%22ISSN%22%3A%222673-6187%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.frontiersin.org%5C%2Farticles%5C%2F10.3389%5C%2Ffrsen.2024.1373540%5C%2Ffull%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222024-08-29T17%3A45%3A34Z%22%7D%7D%2C%7B%22key%22%3A%224CU8RNEI%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Chamberlain%20et%20al.%22%2C%22parsedDate%22%3A%222024-07-17%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EChamberlain%2C%20P.%2C%20Frouin%2C%20R.%20J.%2C%20%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20Mazloff%2C%20M.%2C%20Barnard%2C%20A.%2C%20Boss%2C%20E.%2C%20Ha%26%23xEB%3Bntjens%2C%20N.%2C%20%26amp%3B%20Orrico%2C%20C.%20%282024%29.%20Selecting%20HyperNav%20deployment%20sites%20for%20calibrating%20and%20validating%20PACE%20ocean%20color%20observations.%20%3Ci%3EFrontiers%20in%20Remote%20Sensing%3C%5C%2Fi%3E%2C%20%3Ci%3E5%3C%5C%2Fi%3E%2C%201333851.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2024.1333851%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2024.1333851%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Selecting%20HyperNav%20deployment%20sites%20for%20calibrating%20and%20validating%20PACE%20ocean%20color%20observations%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%22%2C%22lastName%22%3A%22Chamberlain%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%20J.%22%2C%22lastName%22%3A%22Frouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%22%2C%22lastName%22%3A%22Barnard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuel%22%2C%22lastName%22%3A%22Boss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nils%22%2C%22lastName%22%3A%22Ha%5Cu00ebntjens%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cristina%22%2C%22lastName%22%3A%22Orrico%22%7D%5D%2C%22abstractNote%22%3A%22A%20novel%20ocean%20profiling%20float%20system%20for%20calibrating%20and%20validating%20satellite-based%20ocean%20color%20observations%20has%20been%20developed%20and%20tested.%20The%20float-based%20radiometric%20sampling%20system%2C%20herein%20referred%20to%20as%20HyperNav%2C%20is%20complementary%20to%20traditional%20moored%20in-situ%20observing%20systems%20and%20provides%20additional%20capability%20due%20to%20the%20relatively%20small%20platform%20size%20and%20high%20radiometric%20accuracy%20that%20allows%20for%20opportunistic%20deployments%20at%20locations%20during%20seasons%20and%20conditions%20that%20are%20best%20for%20ocean%20color%20observations.%20The%20purpose%20of%20this%20study%20is%20to%20optimize%20the%20deployment%20locations%20of%20an%20array%20of%20HyperNav%20systems%20to%20support%20the%20Plankton%2C%20Aerosol%2C%20Cloud%2C%20ocean%20Ecosystem%20%28PACE%29%20mission%20by%20performing%20System%20Vicarious%20Calibration%20%28SVC%29%20observations.%20Specifically%2C%20we%20present%20the%20development%20of%20logistical%20and%20scientific%20criteria%20for%20selecting%20suitable%20sites%20for%20developing%20an%20SVC%20network%20of%20profiling-float-based%20radiometric%20systems%20capable%20of%20calibrating%20and%20validating%20ocean%20color%20observations.%20As%20part%20of%20the%20analyses%20described%20in%20this%20paper%2C%20we%20have%20synthetically%20deployed%20HyperNav%20at%20potential%20US-based%20and%20international%20sites%2C%20including%3A%20north%20of%20Crete%20island%3B%20south-east%20of%20Bermuda%20island%3B%20south%20of%20Puerto%20Rico%20island%3B%20southwest%20of%20Port%20Hueneme%2C%20CA%3B%20west%20of%20Monterey%2C%20CA%3B%20west%20of%20Kona%2C%20HI%3B%20and%20south-west%20of%20Tahiti%20island.%20The%20synthetic%20analyses%20identified%20Kona%2C%20Puerto%20Rico%2C%20Crete%2C%20and%20Tahiti%20as%20promising%20SVC%20sites.%20All%20sites%20considered%20are%20suitable%20for%20generating%20a%20significant%20number%20of%20validation%20match-ups.%20Optimally%20deploying%20HyperNav%20systems%20at%20these%20sites%20during%20the%20PACE%20post-launch%20SVC%20campaign%20is%20expected%20to%20cost-effectively%20provide%20a%20large%20number%20of%20SVC%20match-ups%20to%20fulfill%20the%20PACE%20calibration%20requirements.%22%2C%22date%22%3A%222024-7-17%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3389%5C%2Ffrsen.2024.1333851%22%2C%22ISSN%22%3A%222673-6187%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.frontiersin.org%5C%2Farticles%5C%2F10.3389%5C%2Ffrsen.2024.1333851%5C%2Ffull%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222024-09-04T17%3A43%3A11Z%22%7D%7D%2C%7B%22key%22%3A%22AETIFK3T%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Barnard%20et%20al.%22%2C%22parsedDate%22%3A%222024-06-28%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBarnard%2C%20A.%2C%20Boss%2C%20E.%2C%20Ha%26%23xEB%3Bntjens%2C%20N.%2C%20Orrico%2C%20C.%2C%20Frouin%2C%20R.%2C%20%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20Klumpp%2C%20J.%2C%20Dewey%2C%20M.%2C%20Walter%2C%20D.%2C%20Mazloff%2C%20M.%2C%20%26amp%3B%20Chamberlain%2C%20P.%20%282024%29.%20Design%20and%20verification%20of%20a%20highly%20accurate%20in-situ%20hyperspectral%20radiometric%20measurement%20system%20%28HyperNav%29.%20%3Ci%3EFrontiers%20in%20Remote%20Sensing%3C%5C%2Fi%3E%2C%20%3Ci%3E5%3C%5C%2Fi%3E%2C%201369769.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2024.1369769%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2024.1369769%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Design%20and%20verification%20of%20a%20highly%20accurate%20in-situ%20hyperspectral%20radiometric%20measurement%20system%20%28HyperNav%29%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%22%2C%22lastName%22%3A%22Barnard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuel%22%2C%22lastName%22%3A%22Boss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nils%22%2C%22lastName%22%3A%22Ha%5Cu00ebntjens%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cristina%22%2C%22lastName%22%3A%22Orrico%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%22%2C%22lastName%22%3A%22Frouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Justin%22%2C%22lastName%22%3A%22Klumpp%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Michael%22%2C%22lastName%22%3A%22Dewey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22David%22%2C%22lastName%22%3A%22Walter%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matthew%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%22%2C%22lastName%22%3A%22Chamberlain%22%7D%5D%2C%22abstractNote%22%3A%22Hyperspectral%20optical%20observations%20of%20the%20Earth%5Cu2019s%20surface%20oceans%20from%20space%20offer%20a%20means%20to%20improve%20our%20understanding%20of%20ocean%20biology%20and%20biogeochemistry.%20NASA%5Cu2019s%20Plankton%2C%20Aerosol%2C%20Cloud%2C%20ocean%20Ecosystem%20%28PACE%29%20satellite%20mission%2C%20which%20includes%20a%20hyperspectral%20ocean%20color%20instrument%20%28OCI%29%2C%20will%20provide%20radiometric%20observations%20of%20surface%20ocean%20with%20near%20continuous%20spectral%20resolution%20across%20the%20near%20UV%20to%20NIR%20range.%20Maintaining%20sufficient%20accuracy%20over%20the%20lifetime%20of%20satellite%20ocean%20color%20missions%20requires%20a%20robust%20program%20for%20system%20vicarious%20calibration%20%28SVC%29%20and%20product%20validation.%20The%20system%20vicarious%20calibration%20process%20combines%20satellite%20sensor%20data%20with%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in-situ%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20radiometric%5C%2Foptical%20measurements%20to%20remove%20potential%20biases%20due%20to%20the%20combined%20errors%20from%20both%20satellite%20radiometric%20sensor%20calibration%20and%20atmospheric%20correction.%20As%20such%2C%20high%20accuracy%2C%20high-spectral%20resolution%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in-situ%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20radiometric%20measurements%20are%20required%20to%20provide%20a%20principal%20source%20of%20truth%20for%20the%20satellite-derived%20products.%20To%20meet%20the%20requirements%2C%20a%20novel%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in-situ%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20radiometric%20system%2C%20called%20HyperNav%2C%20has%20been%20developed%2C%20rigorously%20characterized%20and%20field%20tested.%20Key%20attributes%20of%20HyperNav%20are%20dual%20upwelling%20radiance%20heads%20coupled%20to%20individual%20spectrometers%2C%20spectral%20resolution%20of%20%5Cu223c2.2%5Cu00a0nm%20%28full%20width%2C%20half-maximum%29%20across%20320%5Cu2013900%5Cu00a0nm%2C%20integrated%20shutter%20systems%20for%20dark%20measurements%2C%20and%20integrated%20tilt%20and%20pressure%20sensors.%20The%20HyperNav%20operational%20modes%20include%20traditional%20profiling%20and%20surface%20modes%2C%20as%20well%20as%20integration%20with%20an%20autonomous%20profiling%20float%20for%20unattended%20deployment%2C%20offering%20a%20new%20capability%20for%20a%20network%20of%20autonomous%20platforms%20to%20support%20the%20long-term%20needs%20for%20hyperspectral%20ocean%20color%20remote%20sensing%20observations.%20This%20paper%20describes%20the%20HyperNav%20design%2C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in-situ%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20operational%20modes%2C%20and%20field%20verification%20results.%22%2C%22date%22%3A%222024-6-28%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3389%5C%2Ffrsen.2024.1369769%22%2C%22ISSN%22%3A%222673-6187%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.frontiersin.org%5C%2Farticles%5C%2F10.3389%5C%2Ffrsen.2024.1369769%5C%2Ffull%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222024-07-30T18%3A52%3A56Z%22%7D%7D%2C%7B%22key%22%3A%229K4TVMSS%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tan%20et%20al.%22%2C%22parsedDate%22%3A%222024-03-14%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20Frouin%2C%20R.%2C%20H%26%23xE4%3Bentjens%2C%20N.%2C%20Barnard%2C%20A.%2C%20Boss%2C%20E.%2C%20Chamberlain%2C%20P.%2C%20Mazloff%2C%20M.%2C%20%26amp%3B%20Orrico%2C%20C.%20%282024%29.%20Reconstructing%20hyper-spectral%20downwelling%20irradiance%20from%20multi-spectral%20measurements.%20%3Ci%3EFrontiers%20in%20Remote%20Sensing%3C%5C%2Fi%3E%2C%20%3Ci%3E5%3C%5C%2Fi%3E%2C%201335627.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2024.1335627%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2024.1335627%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Reconstructing%20hyper-spectral%20downwelling%20irradiance%20from%20multi-spectral%20measurements%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%22%2C%22lastName%22%3A%22Frouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Nils%22%2C%22lastName%22%3A%22H%5Cu00e4entjens%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andrew%22%2C%22lastName%22%3A%22Barnard%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuel%22%2C%22lastName%22%3A%22Boss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Paul%22%2C%22lastName%22%3A%22Chamberlain%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Matt%22%2C%22lastName%22%3A%22Mazloff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cristina%22%2C%22lastName%22%3A%22Orrico%22%7D%5D%2C%22abstractNote%22%3A%22Checking%20the%20radiometric%20calibration%20of%20satellite%20hyper-spectral%20sensors%20such%20as%20the%20PACE%20Ocean%20Color%20Instrument%20%28OCI%29%20while%20they%20operate%20in%20orbit%20and%20evaluating%20remote%20sensing%20reflectance%2C%20the%20basic%20variable%20from%20which%20a%20variety%20of%20optical%20and%20biogeochemical%20ocean%20properties%20can%20be%20derived%2C%20requires%20measuring%20upwelling%20radiance%20just%20above%20the%20surface%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20L%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20w%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20and%20downwelling%20planar%20irradiance%20reaching%20the%20surface%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29.%20For%20this%2C%20the%20current%20HyperNav%20systems%20measure%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20L%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20w%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20at%20about%202%5Cu00a0nm%20spectral%20resolution%20in%20the%20ultraviolet%20to%20near%20infrared%2C%20but%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in%20only%20four%2010%5Cu00a0nm%20wide%20spectral%20bands%20centered%20on%20412%2C%20489%2C%20555%2C%20and%20705%5Cu00a0nm.%20In%20this%20study%2C%20the%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20data%20acquired%20in%20these%20spectral%20bands%20in%20clear%20sky%20conditions%20are%20used%20to%20reconstruct%20via%20a%20multi-linear%20regression%20model%20the%20hyper-spectral%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20signal%20at%200.5%5Cu00a0nm%20resolution%20from%20315%20to%20900%5Cu00a0nm%2C%20the%20OCI%20spectral%20range%2C%20allowing%20an%20estimate%20of%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20at%20the%20HyperNav%2C%20OCI%2C%20and%20other%20sensors%5Cu2019%20resolutions.%20After%20correction%20of%20gaseous%20absorption%20and%20normalization%20by%20the%20top-of-atmosphere%20incident%20solar%20flux%2C%20the%20atmospheric%20diffuse%20transmittance%20is%20expressed%20as%20a%20linear%20combination%20of%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20measured%20in%20those%204%20spectral%20bands.%20Based%20on%20simulations%20for%20Sun%20zenith%20angles%20from%200%20to%2075%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu00b0%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20and%20a%20wide%20range%20of%20%28i.e.%2C%20expected%29%20atmospheric%2C%20surface%2C%20and%20water%20conditions%2C%20the%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20spectrum%20is%20reconstructed%20with%20a%20bias%20of%20less%20than%200.4%25%20in%20magnitude%20and%20an%20RMS%20error%20%28RMSE%29%20ranging%20from%200%25%20to%202.5%25%2C%20depending%20on%20wavelength.%20The%20largest%20errors%20occur%20in%20spectral%20regions%20with%20strong%20gaseous%20absorption.%20In%20the%20presence%20of%20typical%20noise%20on%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20measurements%20and%20uncertainties%20on%20the%20ancillary%20variables%2C%20the%20bias%20and%20RMSE%20become%20%5Cu22122.5%25%20and%207.0%25%2C%20respectively.%20Using%20a%20General%20Additive%20Model%20with%20coefficients%20depending%20on%20Sun%20zenith%20angle%20and%20aerosol%20optical%20thickness%20at%20550%5Cu00a0nm%20improves%20statistical%20performance%20in%20the%20absence%20of%20noise%2C%20especially%20in%20the%20ultraviolet%2C%20but%20provides%20similar%20performance%20on%20noisy%20data%2C%20indicating%20more%20sensitivity%20to%20noise.%20Adding%20spectral%20bands%20in%20the%20ultraviolet%2C%20e.g.%2C%20centered%20on%20325%2C%20340%2C%20and%20380%5Cu00a0nm%2C%20yields%20marginally%20more%20accurate%20results%20in%20the%20ultraviolet%2C%20due%20to%20uncertainties%20in%20the%20gaseous%20transmittance.%20Comparisons%20between%20the%20measured%20and%20reconstructed%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20spectra%20acquired%20by%20the%20MOBY%20spectroradiometer%20show%20agreement%20within%20predicted%20uncertainties%2C%20i.e.%2C%20biases%20less%20than%202%25%20in%20magnitude%20and%20RMS%20differences%20less%20than%205%25.%20Reconstruction%20can%20also%20be%20achieved%20accurately%20with%20other%20sets%20of%20spectral%20bands%20and%20extended%20to%20cloudy%20conditions%20since%20cloud%20optical%20properties%2C%20like%20aerosol%20properties%2C%20tend%20to%20vary%20regularly%20with%20wavelength.%20These%20results%20indicate%20that%20it%20is%20sufficient%2C%20for%20many%20scientific%20applications%20involving%20hyper-spectral%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%20to%20measure%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20E%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20s%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20in%20a%20few%20coarse%20spectral%20bands%20in%20the%20ultraviolet%20to%20near%20infrared%20and%20reconstruct%20the%20hyperspectral%20signal%20using%20the%20proposed%20multivariate%20linear%20modeling.%22%2C%22date%22%3A%222024-3-14%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3389%5C%2Ffrsen.2024.1335627%22%2C%22ISSN%22%3A%222673-6187%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.frontiersin.org%5C%2Farticles%5C%2F10.3389%5C%2Ffrsen.2024.1335627%5C%2Ffull%22%2C%22collections%22%3A%5B%22P6BBM9XF%22%2C%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222024-04-12T20%3A46%3A10Z%22%7D%7D%2C%7B%22key%22%3A%22QFXV3I2F%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Begouen%20Demeaux%20et%20al.%22%2C%22parsedDate%22%3A%222024-01-15%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBegouen%20Demeaux%2C%20C.%2C%20Boss%2C%20E.%2C%20%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Frouin%2C%20R.%20%282024%29.%20Algorithms%20to%20retrieve%20the%20spectral%20diffuse%20attenuation%20coefficient%20of%20light%20in%20the%20ocean%20from%20remote%20sensing.%20%3Ci%3EOptics%20Express%3C%5C%2Fi%3E%2C%20%3Ci%3E32%3C%5C%2Fi%3E%282%29%2C%202507.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.505497%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2FOE.505497%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Algorithms%20to%20retrieve%20the%20spectral%20diffuse%20attenuation%20coefficient%20of%20light%20in%20the%20ocean%20from%20remote%20sensing%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Charlotte%22%2C%22lastName%22%3A%22Begouen%20Demeaux%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Emmanuel%22%2C%22lastName%22%3A%22Boss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%22%2C%22lastName%22%3A%22Frouin%22%7D%5D%2C%22abstractNote%22%3A%22We%20recently%20found%20a%20significant%20bias%20between%20spectral%20diffuse%20attenuation%20coefficient%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20K%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20d%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03bb%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%29%20retrievals%20by%20common%20ocean%20color%20algorithms%20and%20measurements%20from%20profiling%20floats%20%5B%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20Remote.%20Sens.%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2014%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2C%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%204500%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%202022%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%2010.3390%5C%2Frs14184500%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5D.%20Here%20we%20show%2C%20using%20a%20multi-satellite%20match-up%20dataset%2C%20that%20the%20bias%20is%20markedly%20reduced%20by%20simple%20%5C%22tuning%5C%22%20of%20the%20algorithm%5Cu2019s%20empirical%20coefficients.%20However%2C%20while%20the%20float%20dataset%20encompasses%20a%20larger%20proportion%20of%20the%20ocean%5Cu2019s%20variability%20than%20previously%20used%20datasets%2C%20it%20does%20not%20cover%20the%20whole%20range%20of%20variability%20of%20observed%20remote%20sensing%20reflectance%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20R%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20rs%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29.%20Thus%2C%20using%20algorithms%20tuned%20to%20this%20more%20comprehensive%20dataset%20may%20still%20result%20in%20a%20temporal%20and%5C%2For%20geographical%20bias%20in%20global%20application.%20To%20address%20this%20generalization%20issue%2C%20we%20evaluated%20a%20variety%20of%20analytical%20algorithms%20based%20on%20radiative%20transfer%20theory%20and%20settled%20on%20a%20specific%20one.%20This%20algorithm%20computes%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20K%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20d%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03bb%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20from%20inherent%20optical%20properties%20%28IOPs%29%20obtained%20from%20an%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20R%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20rs%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20inversion%20and%20information%20about%20the%20angular%20distribution%20of%20the%20radiance%20transmitted%20through%20the%20air%5C%2Focean%20interface.%20The%20resulting%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20K%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20d%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cu03bb%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%29%20estimates%20at%20412%20and%20490%20nm%20were%20not%20appreciably%20biased%20against%20the%20float%20measurements.%20Evaluation%20using%20other%20in-situ%20datasets%20and%20radiative%20transfer%20simulations%20was%20also%20satisfactory.%20Statistical%20performance%20was%20good%20in%20both%20clear%20and%20turbid%20waters.%20Further%20work%20should%20be%20conducted%20to%20examine%20whether%20the%20tuned%20algorithms%20and%5C%2For%20the%20new%20analytical%20algorithm%20demonstrate%20adequate%20hyperspectral%20performance.%22%2C%22date%22%3A%222024-01-15%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1364%5C%2FOE.505497%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fopg.optica.org%5C%2Fabstract.cfm%3FURI%3Doe-32-2-2507%22%2C%22collections%22%3A%5B%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222024-04-11T23%3A12%3A22Z%22%7D%7D%2C%7B%22key%22%3A%22TUX6DZUQ%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Dupouy%20et%20al.%22%2C%22parsedDate%22%3A%222023-10-31%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EDupouy%2C%20C.%2C%20Whiteside%2C%20A.%2C%20%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20Wattelez%2C%20G.%2C%20Murakami%2C%20H.%2C%20Andr%26%23xE9%3Boli%2C%20R.%2C%20Lef%26%23xE8%3Bvre%2C%20J.%2C%20R%26%23xF6%3Bttgers%2C%20R.%2C%20Singh%2C%20A.%2C%20%26amp%3B%20Frouin%2C%20R.%20%282023%29.%20A%20Review%20of%20Ocean%20Color%20Algorithms%20to%20Detect%20Trichodesmium%20Oceanic%20Blooms%20and%20Quantify%20Chlorophyll%20Concentration%20in%20Shallow%20Coral%20Lagoons%20of%20South%20Pacific%20Archipelagos.%20%3Ci%3ERemote%20Sensing%3C%5C%2Fi%3E%2C%20%3Ci%3E15%3C%5C%2Fi%3E%2821%29%2C%205194.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Frs15215194%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Frs15215194%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20Review%20of%20Ocean%20Color%20Algorithms%20to%20Detect%20Trichodesmium%20Oceanic%20Blooms%20and%20Quantify%20Chlorophyll%20Concentration%20in%20Shallow%20Coral%20Lagoons%20of%20South%20Pacific%20Archipelagos%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C%5Cu00e9cile%22%2C%22lastName%22%3A%22Dupouy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andra%22%2C%22lastName%22%3A%22Whiteside%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Guillaume%22%2C%22lastName%22%3A%22Wattelez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hiroshi%22%2C%22lastName%22%3A%22Murakami%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R%5Cu00e9mi%22%2C%22lastName%22%3A%22Andr%5Cu00e9oli%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J%5Cu00e9r%5Cu00f4me%22%2C%22lastName%22%3A%22Lef%5Cu00e8vre%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R%5Cu00fcdiger%22%2C%22lastName%22%3A%22R%5Cu00f6ttgers%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Awnesh%22%2C%22lastName%22%3A%22Singh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%22%2C%22lastName%22%3A%22Frouin%22%7D%5D%2C%22abstractNote%22%3A%22The%20oceanic%20waters%20of%20the%20Southwest%20Tropical%20Pacific%20occupy%20a%20vast%20region%20including%20multiple%20Pacific%20Island%20Countries.%20The%20state%20of%20these%20waters%20is%20determinant%20for%20fisheries%20and%20the%20blue%20economy.%20Ocean%20color%20remote%20sensing%20is%20the%20main%20tool%20to%20survey%20the%20variability%20and%20long-term%20evolution%20of%20these%20large%20areas%20that%20are%20important%20for%20economic%20development%20but%20are%20affected%20by%20climate%20change.%20Unlike%20vast%20oligotrophic%20gyres%2C%20tropical%20waters%20are%20characterized%20by%20numerous%20archipelagos%20and%20islands%2C%20with%20deep%20and%20shallow%20lagoons%20subjected%20to%20the%20large%20impacts%20of%20the%20land.%20Strikingly%20large%20dendritic%20phytoplankton%20%28Trichodesmium%29%20blooms%20with%20high%20levels%20of%20chlorophyll%2C%20developing%20within%20archipelagos%2C%20as%20well%20as%20coastal%20enrichments%20from%20various%20origins%20may%20be%20observed.%20Algorithms%20to%20detect%20the%20presence%20of%20Trichodesmium%20have%20been%20developed%20or%20adapted%2C%20as%20well%20as%20algorithms%20to%20estimate%20the%20chlorophyll%20concentration%20%28%5BChl-a%29%5D.%20Adapting%20existing%20%5BChl-a%5D%20algorithms%20does%20not%20always%20yield%20high%2C%20i.e.%2C%20sufficient%2C%20accuracy.%20A%20review%20of%20published%20regional%20bio-optical%20algorithms%20developed%20taking%20into%20account%20the%20specific%20phytoplankton%20composition%20and%20minimizing%20the%20adverse%20impacts%20of%20particles%20and%20the%20seabed%20bottom%20on%20%5BChl-a%5D%20determination%20is%20presented%2C%20as%20well%20the%20bio-optical%20database%20that%20allowed%20their%20development.%20The%20interest%20of%20such%20algorithms%20for%20a%20variety%20of%20applications%20and%20scientific%20accomplishments%20is%20highlighted%2C%20with%20a%20view%20to%20further%20addressing%20the%20main%20biology%20and%20biogeochemistry%20questions%2C%20e.g.%2C%20to%20determine%20the%20true%20impact%20of%20diazotrophs%20and%20assess%20lagoon%20%5BChl-a%5D%20variability%20with%20the%20highest%20confidence.%20This%20work%20anticipates%20the%20use%20of%20future%20coarse%20and%20high-spatial-resolution%20and%20multi-%20and%20hyper-spectral%20satellite%20imagery%20in%20the%20Pacific.%22%2C%22date%22%3A%222023-10-31%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.3390%5C%2Frs15215194%22%2C%22ISSN%22%3A%222072-4292%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.mdpi.com%5C%2F2072-4292%5C%2F15%5C%2F21%5C%2F5194%22%2C%22collections%22%3A%5B%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222023-11-30T19%3A28%3A18Z%22%7D%7D%2C%7B%22key%22%3A%227HSHKPNB%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tan%20et%20al.%22%2C%22parsedDate%22%3A%222023-02-08%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20Frouin%2C%20R.%2C%20%26amp%3B%20Murakami%2C%20H.%20%282023%29.%20Feasibility%20of%20cross-calibrating%20ocean-color%20sensors%20in%20polar%20orbit%20using%20an%20intermediary%20geostationary%20sensor%20of%20reference.%20%3Ci%3EFrontiers%20in%20Remote%20Sensing%3C%5C%2Fi%3E%2C%20%3Ci%3E4%3C%5C%2Fi%3E%2C%201072930.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2023.1072930%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffrsen.2023.1072930%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Feasibility%20of%20cross-calibrating%20ocean-color%20sensors%20in%20polar%20orbit%20using%20an%20intermediary%20geostationary%20sensor%20of%20reference%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%22%2C%22lastName%22%3A%22Frouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Hiroshi%22%2C%22lastName%22%3A%22Murakami%22%7D%5D%2C%22abstractNote%22%3A%22A%20generic%20methodology%20is%20presented%20to%20cross-calibrate%20satellite%20ocean-color%20sensors%20in%20polar%20orbit%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20via%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20an%20intermediary%20geostationary%20sensor%20of%20reference.%20In%20this%20study%2C%20AHI%20onboard%20Hiwamari-8%20is%20used%20as%20the%20intermediary%20sensor%20to%20cross-calibrate%20SGLI%20onboard%20GCOM-C%20and%20MODIS%20onboard%20Aqua%20and%20Terra%20%28MODIS-A%20and%20MODIS-T%29%20after%20system%20vicarious%20calibration%20%28SVC%29.%20Numerous%20coincidences%20were%20obtained%20near%20the%20Equator%20using%203%5Cu00a0days%20of%20imagery%2C%20i.e.%2C%2011%20May%202018%2C%2022%20January%202019%2C%20and%2025%20January%202020.%20Spectral%20matching%20to%20AHI%20spectral%20bands%20was%20first%20performed%20for%20a%20wide%20range%20of%20angular%20geometry%2C%20aerosol%20conditions%2C%20and%20Case%201%20waters%20using%20a%20single%20band%20or%20multiple%20bands%20of%20SGLI%2C%20MODIS-A%20and%20MODIS-T%2C%20yielding%20root%20mean%20square%20differences%20of%200.1%5Cu20130.7%25%20in%20the%20blue%20and%20green%20and%200.7%25%5Cu20133.7%25%20in%20the%20red%20depending%20on%20the%20band%20combination.%20Limited%20by%20the%20inherent%20AHI%20instrument%20noise%20and%20the%20system%20vicarious%20calibration%20of%20individual%20polar-orbiting%20sensors%2C%20cross-calibration%20was%20only%20performed%20for%20equivalent%20AHI%20bands%20centered%20on%20at%20471%2C%20510%2C%20and%20639%5Cu00a0nm.%20Results%20show%20that%20MODIS-A%20and%20MODIS-T%20are%20accurately%20cross-calibrated%2C%20with%20cross-calibration%20ratios%20differing%20by%200.1%25%5Cu20130.8%25%20in%20magnitude.%20These%20differences%20are%20within%20or%20slightly%20outside%20the%20estimated%20uncertainties%20of%20%5Cu00b10.6%25%20to%20%5Cu00b11.0%25.%20In%20contrast%2C%20SGLI%20shows%20larger%20cross-calibration%20differences%2C%20i.e.%2C%201.4%25%2C%203.4%25%2C%20and%201.1%25%20with%20MODIS-A%20and%201.5%25%2C%204.6%25%2C%20and%201.5%25%20with%20MODIS-T%2C%20respectively.%20These%20differences%20are%20above%20uncertainties%20of%20%5Cu00b10.8%5Cu20131.0%25%20at%20471%20and%20510%5Cu00a0nm%20and%20within%20uncertainties%20of%20%5Cu00b12.3%25%20and%20%5Cu00b11.9%25%20at%20639%5Cu00a0nm.%20Such%20differences%20may%20introduce%20significant%20discrepancies%20between%20ocean-color%20products%20generated%20from%20SGLI%20and%20MODIS%20data%2C%20although%20some%20compensation%20may%20occur%20because%20different%20atmospheric%20correction%20schemes%20are%20used%20to%20process%20SGLI%20and%20MODIS%20imagery%2C%20and%20SVC%20is%20based%20on%20the%20selected%20scheme.%20Geostationary%20sensors%20with%20ocean%20color%20capability%20have%20potential%20to%20improve%20the%20spectral%20matching%20and%20reduce%20uncertainties%2C%20as%20long%20as%20they%20provide%20imagery%20at%20sufficient%20cadence%20over%20equatorial%20regions.%20The%20methodology%20is%20applicable%20to%20polar-orbiting%20optical%20sensors%20in%20general%20and%20can%20be%20implemented%20operationally%20to%20ensure%20consistency%20of%20products%20generated%20by%20individual%20sensors%20in%20establishing%20long-term%20data%20records%20for%20climate%20studies.%22%2C%22date%22%3A%222023-2-8%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3389%5C%2Ffrsen.2023.1072930%22%2C%22ISSN%22%3A%222673-6187%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.frontiersin.org%5C%2Farticles%5C%2F10.3389%5C%2Ffrsen.2023.1072930%5C%2Ffull%22%2C%22collections%22%3A%5B%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222023-10-24T22%3A59%3A52Z%22%7D%7D%2C%7B%22key%22%3A%22Q6YECITG%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Whiteside%20et%20al.%22%2C%22parsedDate%22%3A%222023-01-04%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EWhiteside%2C%20A.%2C%20Dupouy%2C%20C.%2C%20Singh%2C%20A.%2C%20Bani%2C%20P.%2C%20%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Frouin%2C%20R.%20%282023%29.%20Impact%20of%20ashes%20from%20the%202022%20Tonga%20volcanic%20eruption%20on%20satellite%20ocean%20color%20signatures.%20%3Ci%3EFrontiers%20in%20Marine%20Science%3C%5C%2Fi%3E%2C%20%3Ci%3E9%3C%5C%2Fi%3E%2C%201028022.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffmars.2022.1028022%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffmars.2022.1028022%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Impact%20of%20ashes%20from%20the%202022%20Tonga%20volcanic%20eruption%20on%20satellite%20ocean%20color%20signatures%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Andra%22%2C%22lastName%22%3A%22Whiteside%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C%5Cu00e9cile%22%2C%22lastName%22%3A%22Dupouy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Awnesh%22%2C%22lastName%22%3A%22Singh%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Philipson%22%2C%22lastName%22%3A%22Bani%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Robert%22%2C%22lastName%22%3A%22Frouin%22%7D%5D%2C%22abstractNote%22%3A%22A%20powerful%20eruption%20within%20the%20Hunga%20Tonga-Hunga%20Ha%5Cu2019apai%20%28HTHH%29%20volcano%20%2820.64%5Cu00b0S%2C%20175.19%5Cu00b0W%29%20in%20the%20Kingdom%20of%20Tonga%2C%20occurred%20on%2015%20January%202022.%20The%20volcanic%20blast%20was%20enormous%2C%20leading%20many%20scientists%20to%20investigate%20the%20full%20impact%20and%20magnitude%20of%20this%20event%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20via%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20satellite%20observations.%20In%20this%20study%2C%20we%20describe%20a%20new%20ocean%20color%20signature%20from%20a%20discolored%20water%20patch%20created%20by%20the%20HTHH%20eruption%20using%20NASA%20and%20CMEMS%20products%20of%20satellite-derived%20biological%20and%20optical%20properties.%20Elevated%20surface%20chlorophyll-a%20concentration%20%28Chl-a%29%20between%200.15%20to%202.7%20mg.m%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20-3%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20was%20not%20associated%20with%20phytoplankton%20growth%2C%20but%20to%20basalt-andesitic%20ash%20material%20expelled%20by%20the%20volcano%20and%20into%20the%20ocean%2C%20which%20resulted%20in%20erroneous%20Chl-a%20estimates.%20Distribution%20of%20the%20patch%20over%20time%20was%20aligned%20with%20CMEMS%20ocean%20currents%20for%2019%20days.%20The%20gradual%20decrease%20of%20light%20attenuation%20or%20diffuse%20attenuation%20coefficient%20for%20downward%20irradiance%20at%20490%20nm%2C%20K%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20d%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28490%29%2C%20was%20interpreted%20as%20due%20to%20the%20sinking%20of%20ash%20particles%20with%20time.%20It%20is%20suggested%20that%20due%20to%20high%20porosity%20of%2030-40%25%2C%20a%20density%20close%20to%20that%20of%20seawater%2C%20ash%20particles%20stay%20suspended%20in%20the%20water%20column%20for%20more%20than%2010%20days%20with%20sustained%20high%20values%20of%20satellite-derived%20Chl-a%2C%20K%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20d%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%5Cn%20%20%20%20%20%20%20%20%20%20%20%20%20%20%28490%29%2C%20and%20particulate%20backscattering%20coefficient%20at%20443%20nm.%20The%20high%20attenuation%20of%20light%20due%20to%20ash%2C%20reducing%20the%20penetration%20depth%20to%20less%20than%2010%20meters%20during%20the%20first%20period%20after%20the%20eruption%20may%20have%20had%20implications%20on%20ecological%20processes%20and%20biogeochemical%20cycles%20in%20Tongan%20waters.%22%2C%22date%22%3A%222023-1-4%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3389%5C%2Ffmars.2022.1028022%22%2C%22ISSN%22%3A%222296-7745%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Fwww.frontiersin.org%5C%2Farticles%5C%2F10.3389%5C%2Ffmars.2022.1028022%5C%2Ffull%22%2C%22collections%22%3A%5B%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222023-03-20T15%3A27%3A50Z%22%7D%7D%2C%7B%22key%22%3A%22T6I2NAWV%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Lutz%20et%20al.%22%2C%22parsedDate%22%3A%222023%22%2C%22numChildren%22%3A0%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ELutz%2C%20V.%2C%20Chidiak%2C%20M.%2C%20Frouin%2C%20R.%2C%20Negri%2C%20R.%2C%20Dogliotti%2C%20A.%20I.%2C%20Santamaria-del-Angel%2C%20E.%2C%20Berghoff%2C%20C.%20F.%2C%20Rojas%2C%20J.%2C%20Filipello%2C%20C.%2C%20Astor%2C%20Y.%2C%20Segura%2C%20V.%2C%20Gonzalez-Silvera%2C%20A.%2C%20Escudero%2C%20L.%2C%20Ledesma%2C%20J.%2C%20Ueyoshi%2C%20K.%2C%20Silva%2C%20R.%20I.%2C%20Ruiz%2C%20M.%20G.%2C%20Cozzolino%2C%20E.%2C%20Allega%2C%20L.%2C%20%26%23x2026%3B%20Kampel%2C%20M.%20%282023%29.%20Regulation%20of%20CO2%20by%20the%20sea%20in%20areas%20around%20Latin%20America%20in%20a%20context%20of%20climate%20change.%20%3Ci%3EEnvironmental%20Monitoring%20and%20Assessment%3C%5C%2Fi%3E%2C%20%3Ci%3E195%3C%5C%2Fi%3E%283%29%2C%20417.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs10661-023-10997-1%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1007%5C%2Fs10661-023-10997-1%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Regulation%20of%20CO2%20by%20the%20sea%20in%20areas%20around%20Latin%20America%20in%20a%20context%20of%20climate%20change%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Lutz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Chidiak%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Frouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Negri%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20I.%22%2C%22lastName%22%3A%22Dogliotti%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Santamaria-del-Angel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%20F.%22%2C%22lastName%22%3A%22Berghoff%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Rojas%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22C.%22%2C%22lastName%22%3A%22Filipello%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Y.%22%2C%22lastName%22%3A%22Astor%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22V.%22%2C%22lastName%22%3A%22Segura%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Gonzalez-Silvera%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Escudero%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Ledesma%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Ueyoshi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%20I.%22%2C%22lastName%22%3A%22Silva%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20G.%22%2C%22lastName%22%3A%22Ruiz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Cozzolino%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Allega%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Kampel%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%2203%5C%2F2023%22%2C%22language%22%3A%22en%22%2C%22DOI%22%3A%2210.1007%5C%2Fs10661-023-10997-1%22%2C%22ISSN%22%3A%220167-6369%2C%201573-2959%22%2C%22url%22%3A%22https%3A%5C%2F%5C%2Flink.springer.com%5C%2F10.1007%5C%2Fs10661-023-10997-1%22%2C%22collections%22%3A%5B%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222023-04-17T22%3A17%3A35Z%22%7D%7D%2C%7B%22key%22%3A%226NASZEXD%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Hwang%20et%20al.%22%2C%22parsedDate%22%3A%222022-07%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EHwang%2C%20D.%20J.%2C%20Frouin%2C%20R.%2C%20%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20Ahn%2C%20J.%20H.%2C%20Choi%2C%20J.%20K.%2C%20Moon%2C%20J.%20E.%2C%20%26amp%3B%20Ryu%2C%20J.%20H.%20%282022%29.%20Algorithm%20to%20estimate%20daily%20PAR%20at%20the%20ocean%20surface%20from%20GOCI%20data%3A%20description%20and%20evaluation.%20%3Ci%3EFrontiers%20in%20Marine%20Science%3C%5C%2Fi%3E%2C%20%3Ci%3E9%3C%5C%2Fi%3E%2C%2015.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffmars.2022.924967%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffmars.2022.924967%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Algorithm%20to%20estimate%20daily%20PAR%20at%20the%20ocean%20surface%20from%20GOCI%20data%3A%20description%20and%20evaluation%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%20J.%22%2C%22lastName%22%3A%22Hwang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Frouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20H.%22%2C%22lastName%22%3A%22Ahn%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20K.%22%2C%22lastName%22%3A%22Choi%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20E.%22%2C%22lastName%22%3A%22Moon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%20H.%22%2C%22lastName%22%3A%22Ryu%22%7D%5D%2C%22abstractNote%22%3A%22Photosynthetically%20available%20radiation%20%28PAR%29%20reaching%20the%20ocean%20surface%20controls%20phytoplankton%20growth%2C%20primary%20productivity%2C%20and%20evolution%20within%20marine%20ecosystems.%20Therefore%2C%20accurate%20daily%20PAR%20estimates%20are%20important%20for%20a%20broad%20range%20of%20marine%20biology%20and%20biogeochemistry%20applications.%20In%20this%20study%2C%20hourly%20data%20from%20Geostationary%20Ocean%20Color%20Imager%20%28GOCI%29%2C%20the%20world%27s%20first%20geostationary%20ocean%20color%20sensor%2C%20was%20employed%20to%20estimate%20daily%20mean%20PAR%20at%20the%20ocean%20surface%20around%20the%20Korean%20Peninsula%20using%20a%20budget%20model%20based%20on%20plane-parallel%20theory.%20In%20situ%20PAR%20data%20collected%20from%20two%20ocean%20research%20stations%20%28Socheong-cho%20and%20Ieodo%29%20were%20used%20to%20evaluate%20the%20accuracy%20of%20the%20GOCI%20PAR%20estimates.%20First%2C%20the%20instantaneous%20in%20situ%20measurements%20were%20checked%20for%20calibration%20and%20exposure%20errors%20against%20Second%20Simulation%20of%20the%20Satellite%20Signal%20in%20the%20Solar%20Spectrum%20%286S%29%20radiative%20transfer%20calculations%20under%20the%20clearest%20sky%20conditions%20and%20adjusted%20to%20eliminate%20biases.%20After%20adjustment%2C%20the%20root-means-square%20error%20%28RMSE%29%20between%206S%20and%20in%20situ%20PAR%20data%20was%20reduced%20from%206.08%20%284.81%25%29%20and%203.82%20%283.93%25%29%20mol%5C%2Fm%282%29%5C%2Fday%20to%202.85%20%282.26%25%29%20and%201.74%20%281.21%25%29%20mol%5C%2Fm%282%29%5C%2Fday%20at%20the%20Socheong-cho%20and%20Ieodo%20stations%2C%20respectively%2C%20and%20the%20coefficient%20of%20determination%20R-2%20was%200.99.%20Then%2C%20the%20GOCI%20daily%20mean%20PAR%20estimated%20by%20the%20initial%20algorithm%20were%20corrected%20using%20the%202015%20adjusted%20in%20situ%20daily%20PAR%20measurements%20collected%20under%20clear-sky%20conditions.%20The%20daily%20mean%20PAR%20values%20derived%20from%20GOCI%20data%20in%20all%20conditions%20were%20improved%20after%20the%20correction%2C%20with%20RMSE%20reduced%20from%204.58%20%288.30%25%29%20to%202.57%20%284.65%25%29%20mol%5C%2Fm%282%29%5C%2Fday%20and%20R-2%20%3D%200.97.%20The%20comparison%20statistics%20were%20similar%20for%202015%20and%202016%20combined%2C%20with%20RMSE%20of%202.52%20%284.38%25%29%20and%20mean%20bias%20error%20%28MBE%29%20of%20-0.40%20%28-0.70%25%29%2C%20indicating%20that%20the%20correction%20was%20also%20effective%20in%20cloudy%20conditions.%20On%20the%20other%20hand%2C%20daily%20PAR%20estimates%20from%20Moderate%20Resolution%20Imaging%20Spectroradiometer%20%28MODIS%29%20and%20Advanced%20Himawari%20Imager%20%28AHI%29%20yielded%20larger%20RMSE%20of%206.24%20%2810.40%25%29%20mol%5C%2Fm%282%29%5C%2Fday%20and%20MBE%20of%20-2.49%20%28-4.15%25%29%20mol%5C%2Fm%282%29%5C%2Fday%20%28MODIS%29%20and%20RMSE%20of%203.71%20%286.51%25%29%20mol%5C%2Fm%282%29%5C%2Fday%20and%20MBE%20of%20-2.65%20%28-4.65%25%29%20mol%5C%2Fm%282%29%5C%2Fday%20%28AHI%29%20against%20in%20situ%20measurements.%20The%20GOCI-based%20daily%20PAR%20model%20developed%20in%20this%20study%20is%20reliable%20and%20suitable%20for%20investigating%20the%20marine%20environment%20around%20the%20Korean%20Peninsula.%22%2C%22date%22%3A%22Jul%202022%22%2C%22language%22%3A%22English%22%2C%22DOI%22%3A%2210.3389%5C%2Ffmars.2022.924967%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222022-08-29T23%3A20%3A40Z%22%7D%7D%2C%7B%22key%22%3A%22LMKIM9M6%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tan%20et%20al.%22%2C%22parsedDate%22%3A%222020-10%22%2C%22numChildren%22%3A4%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20Frouin%2C%20R.%2C%20Jolivet%2C%20D.%2C%20Compiegne%2C%20M.%2C%20%26amp%3B%20Ramon%2C%20D.%20%282020%29.%20Evaluation%20of%20the%20NASA%20OBPG%20MERIS%20ocean%20surface%20PAR%20product%20in%20clear%20sky%20conditions.%20%3Ci%3EOptics%20Express%3C%5C%2Fi%3E%2C%20%3Ci%3E28%3C%5C%2Fi%3E%2822%29%2C%2033157%26%23x2013%3B33175.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2Foe.396066%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1364%5C%2Foe.396066%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Evaluation%20of%20the%20NASA%20OBPG%20MERIS%20ocean%20surface%20PAR%20product%20in%20clear%20sky%20conditions%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Frouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Jolivet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Compiegne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Ramon%22%7D%5D%2C%22abstractNote%22%3A%22The%20operational%20MEdium%20Resolution%20Imaging%20Spectrometer%20%28MERIS%29%20daily%20mean%20photosynthetically%20available%20radiation%20%28PAR%29%20product%20generated%20by%20the%20NASA%20Ocean%20Biology%20Processing%20Group%20%28OBPG%29%20was%20evaluated%20in%20clear%20sky%20conditions%20against%20in-situ%20measurements%20at%20various%20sites%20in%20the%20northwestern%20Mediterranean%20Sea%20%28BOUSSOLE%20buoy%29%2C%20the%20northwestern%20Pacific%20%28CCE-1%20and%20-2%20moorings%29%2C%20and%20the%20northeastern%20Atlantic%20%28COVE%20platform%29.%20The%20measurements%20were%20first%20checked%20and%20corrected%20for%20calibration%20errors%20and%20uncertainties%20in%20data%20processing%20by%20comparing%20daily%20means%20for%20clear%20days%20%28i.e.%2C%20no%20clouds%20from%20sunrise%20to%20sunset%20and%20low%20aerosol%20abundance%29%20with%20theoretical%20values%20from%20an%20accurate%20Monte%20Carlo%20radiative%20transfer%20code.%20The%20OBPG%20algorithm%20performed%20well%20when%20sky%20was%20completely%20cloudless%20during%20daytime%2C%20with%20a%20bias%20of%200.26%20E%5C%2Fm%282%29%5C%2Fd%20%280.6%25%29%20and%20a%20RMS%20difference%20of%201.7%20E%5C%2Fm%282%29%5C%2Fd%20%284.0%25%29.%20Using%20satellite-derived%20aerosol%20optical%20thickness%20%28AOT%29%20and%20Angstrom%20coefficient%20instead%20of%20climatology%20slightly%20degraded%20the%20results%2C%20which%20was%20likely%20due%20to%20uncertainties%20in%20the%20aerosol%20retrievals.%20A%20sensitivity%20study%20to%20aerosol%20properties%20indicated%20that%20climatology%20may%20not%20work%20in%20some%20situations%20%28e.g.%2C%20episodic%20dust%2C%20pollution%2C%20or%20biomass%20burning%20events%29%2C%20suggesting%20that%20it%20is%20best%20to%20use%20actual%20aerosol%20estimates%20in%20clear%20sky%20conditions.%20The%20analysis%20also%20revealed%20that%20specifying%20aerosol%20properties%2C%20therefore%20atmospheric%20transmittance%2C%20from%20AOT%20and%20Angstrom%20coefficient%2C%20even%20retrieved%20from%20the%20satellite%20imagery%2C%20may%20not%20be%20sufficient%20in%20the%20presence%20of%20absorbing%20aerosols%2C%20especially%20when%20loadings%20are%20important.%20Performance%20was%20degraded%20when%20including%20situations%20of%20clear%20sky%20at%20the%20time%20of%20the%20MERIS%20observation%20but%20cloudy%20sky%20before%20and%5C%2For%20after%20overpass%2C%20resulting%20in%20a%20bias%20%28overestimation%29%20of%202.8%20E%5C%2Fm%282%29%5C%2Fd%20%287.3%25%29%20and%20a%20RMS%20difference%20of%206.0%20E%5C%2Fm%282%29%5C%2Fd%20%2815.8%25%29.%20The%20relatively%20large%20overestimation%20was%20due%20to%20the%20inability%20of%20the%20OBPG%20PAR%20algorithm%20to%20detect%20cloudiness%20at%20times%20other%20than%20the%20time%20of%20satellite%20overpass.%20The%20key%20to%20improving%20the%20daily%20mean%20PAR%20estimates%20in%20such%20situations%20does%20not%20reside%20so%20much%20in%20improving%20the%20radiative%20transfer%20treatment%20or%20specifying%20more%20accurately%20aerosol%20properties%2C%20but%20rather%20in%20accounting%20properly%20for%20the%20diurnal%20variability%20of%20cloudiness.%20To%20this%20end%2C%20a%20methodology%20that%20utilized%20Modern%20Era%20Retrospective%20Reanalysis%20for%20Research%20and%20Applications%2C%20Version%202%20%28MERRA-2%29%20hourly%20cloud%20data%20%28fractional%20coverage%2C%20optical%20thickness%29%20was%20proposed%20and%20tested%2C%20reducing%20the%20bias%20to%201.6%20E%5C%2Fm%282%29%5C%2Fd%20%284.2%25%29.%20Improvement%20was%20not%20sufficient%20in%20some%20situations%2C%20due%20to%20the%20coarse%20resolution%20and%20uncertainties%20of%20the%20MERRA-2%20products%2C%20which%20could%20not%20describe%20properly%20the%20cloud%20properties%20at%20the%20local%20scale%20%28MERIS%20pixel%29.%20The%20treatment%20is%20applicable%20to%20any%20cloud%20situation%20and%20should%20be%20considered%20in%20a%20future%20version%20of%20the%20of%20OBPG%20PAR%20algorithm.%20This%20would%20require%2C%20however%2C%20refreshing%20the%20standard%20OBPG%20PAR%20products%20generated%20as%20part%20of%20the%20ocean-color%20processing%20line%20according%20to%20MERRA-2%20data%20availability.%20%28C%29%202020%20Optical%20Society%20of%20America%20under%20the%20terms%20of%20the%20OSA%20Open%20Access%20Publishing%20Agreement%22%2C%22date%22%3A%222020%5C%2F10%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1364%5C%2Foe.396066%22%2C%22ISSN%22%3A%221094-4087%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222022-09-09T21%3A24%3A50Z%22%7D%7D%2C%7B%22key%22%3A%22QXZMPI7J%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Castillo-Ramirez%20et%20al.%22%2C%22parsedDate%22%3A%222020-08%22%2C%22numChildren%22%3A4%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3ECastillo-Ramirez%2C%20A.%2C%20Santamaria-del-Angel%2C%20E.%2C%20Gonzalez-Silvera%2C%20A.%2C%20Frouin%2C%20R.%2C%20Sebastia-Frasquet%2C%20M.%20T.%2C%20%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20Lopez-Calderon%2C%20J.%2C%20Sanchez-Velasco%2C%20L.%2C%20%26amp%3B%20Enriquez-Paredes%2C%20L.%20%282020%29.%20A%20new%20algorithm%20to%20estimate%20diffuse%20attenuation%20coefficient%20from%20Secchi%20disk%20depth.%20%3Ci%3EJournal%20of%20Marine%20Science%20and%20Engineering%3C%5C%2Fi%3E%2C%20%3Ci%3E8%3C%5C%2Fi%3E%288%29.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fjmse8080558%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Fjmse8080558%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22A%20new%20algorithm%20to%20estimate%20diffuse%20attenuation%20coefficient%20from%20Secchi%20disk%20depth%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Castillo-Ramirez%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Santamaria-del-Angel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Gonzalez-Silvera%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Frouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%20T.%22%2C%22lastName%22%3A%22Sebastia-Frasquet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Lopez-Calderon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Sanchez-Velasco%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Enriquez-Paredes%22%7D%5D%2C%22abstractNote%22%3A%22The%20vertical%20diffuse%20attenuation%20coefficient%20K-d%28PAR%29%20is%20used%20for%20calculating%20the%20euphotic%20zone%2C%20the%20first%20optical%20depth%20that%20is%20important%20for%20primary%20productivity%20models.%20Currently%2C%20K-d%20%28PAR%29can%20be%20estimated%20using%20an%20irradiometer%20or%20a%20Secchi%20disk%20%28SD%29.%20The%20main%20objective%20of%20this%20work%20is%20to%20define%20a%20model%20that%20can%20be%20applied%20to%20a%20wide%20range%20of%20optical%20marine%20conditions%20to%20estimate%20K-d%20%28PAR%29%20by%20SD.%20We%20used%20irradiance%20profiles%20and%20SD%20depth%20%28ZSD%29%20from%20679%20stations%20in%20various%20marine%20regions.%20Three%20parametric%20models%20were%20developed%2C%20and%20their%20statistical%20performance%20was%20evaluated%20in%20view%20of%20previous%20approaches%20reported%20and%20remote%20sensing%20data.%20The%20best%20results%20were%20obtained%20with%20an%20adaptive%20model%20representing%20three%20cases%3A%20clear-water%2C%20turbid-water%2C%20and%20a%20transition%20zone%20%28R-2%20%3D%200.965%2C%20MAE%20%3D%200.083%2C%20RMSD%20%3D%200.239%2C%20BIAS%20%3D%200.01%2C%20and%20MPI%20%3D%200.854%29.%20Previous%20models%20considering%20a%20single%20optical%20depth%20figure%20at%20which%20the%20SD%20disappears%20did%20not%20capture%20the%20marine%20optical%20complexity.%20Our%20classification%20of%20113%20stations%20with%20spectral%20absorption%20data%20into%20Jerlov%20water%20types%20indicated%20that%20no%20unique%20correspondence%20existed%20between%20estimated%20K-d%28PAR%29%20and%20water%20type%2C%20making%20it%20ambiguous%20to%20associate%20compatible%20inherent%20optical%20properties%20and%20chlorophyll%20with%20ZSD.%20Although%20obtaining%20K-d%28PAR%29%20from%20ZSD%20is%20simple%5C%2Flow-cost%2C%20care%20should%20be%20taken%20in%20the%20methodology%20used%20to%20measure%20ZSD%20to%20ensure%20consistent%20results%20across%20different%20optical%20marine%20conditions.%22%2C%22date%22%3A%222020%5C%2F08%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3390%5C%2Fjmse8080558%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222022-09-09T21%3A25%3A14Z%22%7D%7D%2C%7B%22key%22%3A%22JSKEMHYC%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tan%20et%20al.%22%2C%22parsedDate%22%3A%222019-12%22%2C%22numChildren%22%3A4%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20Frouin%2C%20R.%2C%20Ramon%2C%20D.%2C%20%26amp%3B%20Steinmetz%2C%20F.%20%282019%29.%20On%20the%20adequacy%20of%20representing%20water%20reflectance%20by%20semi-analytical%20models%20in%20ocean%20color%20remote%20sensing.%20%3Ci%3ERemote%20Sensing%3C%5C%2Fi%3E%2C%20%3Ci%3E11%3C%5C%2Fi%3E%2823%29.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Frs11232820%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Frs11232820%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22On%20the%20adequacy%20of%20representing%20water%20reflectance%20by%20semi-analytical%20models%20in%20ocean%20color%20remote%20sensing%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Frouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Ramon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Steinmetz%22%7D%5D%2C%22abstractNote%22%3A%22Deterministic%20or%20statistical%20inversion%20schemes%20to%20retrieve%20ocean%20color%20from%20space%20often%20use%20a%20simplified%20water%20reflectance%20model%20that%20may%20introduce%20unrealistic%20constraints%20on%20the%20solution%2C%20a%20disadvantage%20compared%20with%20standard%2C%20two-step%20algorithms%20that%20make%20minimal%20assumptions%20about%20the%20water%20signal.%20In%20view%20of%20this%2C%20the%20semi-analytical%20models%20of%20Morel%20and%20Maritorena%20%282001%29%2C%20MM01%2C%20and%20Park%20and%20Ruddick%20%282005%29%2C%20PR05%2C%20used%20in%20the%20spectral%20matching%20POLYMER%20algorithm%20%28Steinmetz%20et%20al.%2C%202011%29%2C%20are%20examined%20in%20terms%20of%20their%20ability%20to%20restitute%20properly%2C%20i.e.%2C%20with%20sufficient%20accuracy%2C%20water%20reflectance.%20The%20approach%20is%20to%20infer%20water%20reflectance%20at%20MODIS%20wavelengths%2C%20as%20in%20POLYMER%2C%20from%20theoretical%20simulations%20%28using%20Hydrolight%20with%20fluorescence%20and%20Raman%20scattering%29%20and%2C%20separately%2C%20from%20measurements%20%28AERONET-OC%20network%29.%20A%20wide%20range%20of%20Case%201%20and%20Case%202%20waters%2C%20except%20extremely%20turbid%20waters%2C%20are%20included%20in%20the%20simulations%20and%20sampled%20in%20the%20measurements.%20The%20reflectance%20model%20parameters%20that%20give%20the%20best%20fit%20with%20the%20simulated%20data%20or%20the%20measurements%20are%20determined.%20The%20accuracy%20of%20the%20reconstructed%20water%20reflectance%20and%20its%20effect%20on%20the%20retrieval%20of%20inherent%20optical%20properties%20%28IOPs%29%20is%20quantified.%20The%20impact%20of%20cloud%20and%20aerosol%20transmittance%2C%20fixed%20to%20unity%20in%20the%20POLYMER%20scheme%2C%20on%20model%20performance%20is%20also%20evaluated.%20Agreement%20is%20generally%20good%20between%20model%20results%20and%20Hydrolight%20simulations%20or%20AERONET-OC%20values%2C%20even%20in%20optically%20complex%20waters%2C%20with%20discrepancies%20much%20smaller%20than%20typical%20atmospheric%20correction%20errors.%20Significant%20differences%20exist%20in%20some%20cases%2C%20but%20having%20a%20more%20intricate%20model%20%28i.e.%2C%20using%20more%20parameters%29%20makes%20convergence%20more%20difficult.%20The%20trade-off%20is%20between%20efficiency%5C%2Frobustness%20and%20accuracy.%20Notable%20errors%20are%20obtained%20when%20using%20the%20model%20estimates%20to%20retrieve%20IOPs.%20Importantly%2C%20the%20model%20parameters%20that%20best%20fit%20the%20input%20data%2C%20in%20particular%20chlorophyll-a%20concentration%2C%20do%20not%20represent%20adequately%20actual%20values.%20The%20reconstructed%20water%20reflectance%20should%20be%20used%20in%20bio-optical%20algorithms.%20While%20neglecting%20cloud%20and%20aerosol%20transmittances%20degrades%20the%20accuracy%20of%20the%20reconstructed%20water%20reflectance%20and%20the%20retrieved%20IOPs%2C%20it%20negligibly%20affects%20water%20reflectance%20ratios%20and%2C%20therefore%2C%20any%20variable%20derived%20from%20such%20ratios.%22%2C%22date%22%3A%222019%5C%2F12%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3390%5C%2Frs11232820%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222022-09-09T21%3A26%3A31Z%22%7D%7D%2C%7B%22key%22%3A%22H9Z75ZQ4%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Frouin%20et%20al.%22%2C%22parsedDate%22%3A%222019-07%22%2C%22numChildren%22%3A4%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EFrouin%2C%20R.%20J.%2C%20Franz%2C%20B.%20A.%2C%20Ibrahim%2C%20A.%2C%20Knobelspiesse%2C%20K.%2C%20Ahmad%2C%20Z.%2C%20Cairns%2C%20B.%2C%20Chowdhary%2C%20J.%2C%20Dierssen%2C%20H.%20M.%2C%20%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20Dubovik%2C%20O.%2C%20Huang%2C%20X.%2C%20Davis%2C%20A.%20B.%2C%20Kalashnikova%2C%20O.%2C%20Thompson%2C%20D.%20R.%2C%20Remer%2C%20L.%20A.%2C%20Boss%2C%20E.%2C%20Coddington%2C%20O.%2C%20Deschamps%2C%20P.%20Y.%2C%20Gao%2C%20B.%20C.%2C%20%26%23x2026%3B%20Zhai%2C%20P.%20W.%20%282019%29.%20Atmospheric%20correction%20of%20satellite%20ocean-color%20imagery%20during%20the%20PACE%20era.%20%3Ci%3EFrontiers%20in%20Earth%20Science%3C%5C%2Fi%3E%2C%20%3Ci%3E7%3C%5C%2Fi%3E.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffeart.2019.00145%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffeart.2019.00145%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Atmospheric%20correction%20of%20satellite%20ocean-color%20imagery%20during%20the%20PACE%20era%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%20J.%22%2C%22lastName%22%3A%22Frouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%20A.%22%2C%22lastName%22%3A%22Franz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Ibrahim%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22K.%22%2C%22lastName%22%3A%22Knobelspiesse%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Z.%22%2C%22lastName%22%3A%22Ahmad%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Cairns%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Chowdhary%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%20M.%22%2C%22lastName%22%3A%22Dierssen%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Dubovik%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22X.%22%2C%22lastName%22%3A%22Huang%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%20B.%22%2C%22lastName%22%3A%22Davis%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Kalashnikova%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%20R.%22%2C%22lastName%22%3A%22Thompson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%20A.%22%2C%22lastName%22%3A%22Remer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Boss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Coddington%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%20Y.%22%2C%22lastName%22%3A%22Deschamps%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%20C.%22%2C%22lastName%22%3A%22Gao%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22L.%22%2C%22lastName%22%3A%22Gross%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22O.%22%2C%22lastName%22%3A%22Hasekamp%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Omar%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Pelletier%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Ramon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22F.%22%2C%22lastName%22%3A%22Steinmetz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22P.%20W.%22%2C%22lastName%22%3A%22Zhai%22%7D%5D%2C%22abstractNote%22%3A%22The%20Plankton%2C%20Aerosol%2C%20Cloud%2C%20ocean%20Ecosystem%20%28PACE%29%20mission%20will%20carry%20into%20space%20the%20Ocean%20Color%20Instrument%20%28OCI%29%2C%20a%20spectrometer%20measuring%20at%205%20nm%20spectral%20resolution%20in%20the%20ultraviolet%20%28UV%29%20to%20near%20infrared%20%28NIR%29%20with%20additional%20spectral%20bands%20in%20the%20shortwave%20infrared%20%28SWIR%29%2C%20and%20two%20multi-angle%20polarimeters%20that%20will%20overlap%20the%20OCI%20spectral%20range%20and%20spatial%20coverage%2C%20i.%20e.%2C%20the%20Spectrometer%20for%20Planetary%20Exploration%20%28SPEXone%29%20and%20the%20Hyper-Angular%20Rainbow%20Polarimeter%20%28HARP2%29.%20These%20instruments%2C%20especially%20when%20used%20in%20synergy%2C%20have%20great%20potential%20for%20improving%20estimates%20of%20water%20reflectance%20in%20the%20post%20Earth%20Observing%20System%20%28EOS%29%20era.%20Extending%20the%20topof-%20atmosphere%20%28TOA%29%20observations%20to%20the%20UV%2C%20where%20aerosol%20absorption%20is%20effective%2C%20adding%20spectral%20bands%20in%20the%20SWIR%2C%20where%20even%20the%20most%20turbid%20waters%20are%20black%20and%20sensitivity%20to%20the%20aerosol%20coarse%20mode%20is%20higher%20than%20at%20shorter%20wavelengths%2C%20and%20measuring%20in%20the%20oxygen%20A-band%20to%20estimate%20aerosol%20altitude%20will%20enable%20greater%20accuracy%20in%20atmospheric%20correction%20for%20ocean%20color%20science.%20The%20multi-angular%20and%20polarized%20measurements%2C%20sensitive%20to%20aerosol%20properties%20%28e.%20g.%2C%20size%20distribution%2C%20index%20of%20refraction%29%2C%20can%20further%20help%20to%20identify%20or%20constrain%20the%20aerosol%20model%2C%20or%20to%20retrieve%20directly%20water%20reflectance.%20Algorithms%20that%20exploit%20the%20new%20capabilities%20are%20presented%2C%20and%20their%20ability%20to%20improve%20accuracy%20is%20discussed.%20They%20embrace%20a%20modern%2C%20adapted%20heritage%20two-step%20algorithm%20and%20alternative%20schemes%20%28deterministic%2C%20statistical%29%20that%20aim%20at%20inverting%20the%20TOA%20signal%20in%20a%20single%20step.%20These%20schemes%2C%20by%20the%20nature%20of%20their%20construction%2C%20their%20robustness%2C%20their%20generalization%20properties%2C%20and%20their%20ability%20to%20associate%20uncertainties%2C%20are%20expected%20to%20become%20the%20new%20standard%20in%20the%20future.%20A%20strategy%20for%20atmospheric%20correction%20is%20presented%20that%20ensures%20continuity%20and%20consistency%20with%20past%20and%20present%20ocean-color%20missions%20while%20enabling%20full%20exploitation%20of%20the%20new%20dimensions%20and%20possibilities.%20Despite%20the%20major%20improvements%20anticipated%20with%20the%20PACE%20instruments%2C%20gaps%5C%2Fissues%20remain%20to%20be%20filled%5C%2Ftackled.%20They%20include%20dealing%20properly%20with%20whitecaps%2C%20taking%20into%20account%20Earth-curvature%20effects%2C%20correcting%20for%20adjacency%20effects%2C%20accounting%20for%20the%20coupling%20between%20scattering%20and%20absorption%2C%20modeling%20accurately%20water%20reflectance%2C%20and%20acquiring%20a%20sufficiently%20representative%20dataset%20of%20water%20reflectance%20in%20the%20UV%20to%20SWIR.%20Dedicated%20efforts%2C%20experimental%20and%20theoretical%2C%20are%20in%20order%20to%20gather%20the%20necessary%20information%20and%20rectify%20inadequacies.%20Ideas%20and%20solutions%20are%20put%20forward%20to%20address%20the%20unresolved%20issues.%20Thanks%20to%20its%20design%20and%20characteristics%2C%20the%20PACE%20mission%20will%20mark%20the%20beginning%20of%20a%20new%20era%20of%20unprecedented%20accuracy%20in%20ocean-color%20radiometry%20from%20space.%22%2C%22date%22%3A%222019%5C%2F07%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3389%5C%2Ffeart.2019.00145%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222022-09-09T21%3A26%3A59Z%22%7D%7D%2C%7B%22key%22%3A%229L9QFH2K%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tan%20and%20Frouin%22%2C%22parsedDate%22%3A%222019-05%22%2C%22numChildren%22%3A4%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Frouin%2C%20R.%20%282019%29.%20Seasonal%20and%20interannual%20variability%20of%20satellite-derived%20photosynthetically%20available%20radiation%20over%20the%20tropical%20oceans.%20%3Ci%3EJournal%20of%20Geophysical%20Research-Oceans%3C%5C%2Fi%3E%2C%20%3Ci%3E124%3C%5C%2Fi%3E%285%29%2C%203073%26%23x2013%3B3088.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2019jc014942%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1029%5C%2F2019jc014942%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Seasonal%20and%20interannual%20variability%20of%20satellite-derived%20photosynthetically%20available%20radiation%20over%20the%20tropical%20oceans%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Frouin%22%7D%5D%2C%22abstractNote%22%3A%22The%20seasonal%20and%20interannual%20variability%20of%20photosynthetically%20available%20radiation%20%28PAR%29%20over%20the%20tropical%20oceans%20is%20examined%20using%20satellite%20imagery%20acquired%20from%201997%20to%202017.%20Spatial%20and%20temporal%20biases%20between%20monthly%20PAR%20estimates%20from%20different%20instruments%20are%20determined%20and%20corrected%2C%20resulting%20in%20a%20consistent%20time%20series%20over%20the%2020-year%20record.%20Uncertainty%20is%20evaluated%20in%20comparisons%20with%20in%20situ%20measurements%20at%20various%20sites.%20Empirical%20orthogonal%20function%20%28EOF%29%20analysis%20is%20performed%20with%20both%20seasonal%20and%20nonseasonal%20PAR%20signals%2C%20and%20linear%20trends%20are%20quantified.%20Seasonal%20cycles%20dominate%20PAR%20variability%2C%20with%20the%20first%20three%20seasonal%20EOF%20modes%20explaining%2084.7%25%20of%20the%20total%20variance.%20The%20seasonal%20patterns%20are%20related%20to%20solar%20position%20and%20monsoon.%20Canonical%20El%20Nino-Southern%20Oscillation%20%28ENSO%29%20and%20Modoki%20ENSO%20are%20related%20to%20the%20two%20leading%20nonseasonal%20EOF%20modes%2C%20with%20a%20correlation%20coefficient%20of%200.84%20between%20the%20first%20mode%20and%20the%20multivariate%20ENSO%20index%20and%20of%200.48%20between%20the%20second%20mode%20and%20the%20El%20Nino%20Modoki%20index.%20Trend%20analysis%20reveals%20that%20PAR%20tends%20to%20decrease%20by%200.2%25%5C%2Fyear%20in%20the%20central%20Pacific%20north%20of%20the%20equator%20and%20to%20increase%20by%200.2%25%5C%2Fyear%20in%20the%20central%20Pacific%20around%205%20degrees%20S.%20The%20tendency%20is%20also%20for%20PAR%20to%20increase%20west%20of%20Central%20and%20South%20America.%20These%20changes%20are%20consistent%20with%20patterns%20of%20cloud%20change%20evidenced%20in%20the%20satellite%20cloud%20record%20and%20predicted%20by%20global%20climate%20models.%20The%20long-term%20satellite%20PAR%20data%20set%2C%20together%20with%20information%20of%20nutrient%20availability%20and%20temperature%2C%20enables%20further%20studies%20to%20elucidate%20the%20causes%20of%20phytoplankton%20variability%20in%20the%20tropical%20oceans.%20Plain%20Language%20Summary%20Knowing%20the%20spatial%20and%20temporal%20distribution%20of%20photosynthetically%20available%20radiation%20%28PAR%29%20over%20the%20global%20oceans%20is%20critical%20to%20understanding%20biogeochemical%20cycles%20of%20carbon%2C%20nutrients%2C%20and%20oxygen%20and%20to%20address%20important%20climate%20issues%20such%20as%20the%20fate%20of%20anthropogenic%20atmospheric%20carbon%20dioxide.%20This%20paper%20examines%20the%20seasonal%20and%20interannual%20variability%20of%20PAR%20at%20the%20surface%20of%20the%20tropical%20oceans%20using%2020-year%20satellite%20imagery.%20It%20is%20found%20that%20the%20seasonal%20patterns%20are%20related%20to%20solar%20position%20and%20monsoon%20and%20nonseasonal%20patterns%20are%20affected%20by%20El%20Nino%20events.%20The%20PAR%20time%20series%20exhibits%20significant%20trends%20in%20some%20regions%20due%20to%20cloudiness%20change.%20Such%20long-term%20satellite%20PAR%20data%20set%2C%20together%20with%20information%20of%20nutrient%20availability%20and%20temperature%2C%20enables%20further%20studies%20to%20elucidate%20the%20causes%20of%20phytoplankton%20variability%20%28spatial%2C%20seasonal%2C%20and%20interannual%29%20in%20the%20tropical%20oceans.%22%2C%22date%22%3A%222019%5C%2F05%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1029%5C%2F2019jc014942%22%2C%22ISSN%22%3A%222169-9275%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222022-09-09T21%3A27%3A33Z%22%7D%7D%2C%7B%22key%22%3A%225JP5AJGC%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Frouin%20et%20al.%22%2C%22parsedDate%22%3A%222019-02%22%2C%22numChildren%22%3A4%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EFrouin%2C%20R.%2C%20Ramon%2C%20D.%2C%20Boss%2C%20E.%2C%20Jolivet%2C%20D.%2C%20Compiegne%2C%20M.%2C%20%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20Bouman%2C%20H.%2C%20Jackson%2C%20T.%2C%20Franz%2C%20B.%2C%20Plett%2C%20T.%2C%20%26amp%3B%20Sathyendranath%2C%20S.%20%282019%29.%20Satellite%20radiation%20products%20for%20ocean%20biology%20and%20biogeochemistry%3A%20Needs%2C%20state-of-the-art%2C%20gaps%2C%20development%20priorities%2C%20and%20opportunities.%20%3Ci%3EFrontiers%20in%20Marine%20Science%3C%5C%2Fi%3E%2C%20%3Ci%3E5%3C%5C%2Fi%3E.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffmars.2018.00003%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3389%5C%2Ffmars.2018.00003%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Satellite%20radiation%20products%20for%20ocean%20biology%20and%20biogeochemistry%3A%20Needs%2C%20state-of-the-art%2C%20gaps%2C%20development%20priorities%2C%20and%20opportunities%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Frouin%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Ramon%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Boss%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22D.%22%2C%22lastName%22%3A%22Jolivet%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22M.%22%2C%22lastName%22%3A%22Compiegne%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22H.%22%2C%22lastName%22%3A%22Bouman%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Jackson%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22B.%22%2C%22lastName%22%3A%22Franz%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22T.%22%2C%22lastName%22%3A%22Plett%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%22%2C%22lastName%22%3A%22Sathyendranath%22%7D%5D%2C%22abstractNote%22%3A%22Knowing%20the%20spatial%20and%20temporal%20distribution%20of%20the%20underwater%20light%20field%2C%20i.e.%2C%20the%20spectral%20and%20angular%20structure%20of%20the%20radiant%20intensity%20at%20any%20point%20in%20the%20water%20column%2C%20is%20essential%20to%20understanding%20the%20biogeochemical%20processes%20that%20control%20the%20composition%20and%20evolution%20of%20aquatic%20ecosystems%20and%20their%20impact%20on%20climate%20and%20reaction%20to%20climate%20change.%20At%20present%2C%20only%20a%20few%20properties%20are%20reliably%20retrieved%20from%20space%2C%20either%20directly%20or%20via%20water-leaving%20radiance.%20Existing%20satellite%20products%20are%20limited%20to%20planar%20photosynthetically%20available%20radiation%20%28PAR%29%20and%20ultraviolet%20%28UV%29%20irradiance%20above%20the%20surface%20and%20diffuse%20attenuation%20coefficient.%20Examples%20of%20operational%20products%20are%20provided%2C%20and%20their%20advantages%20and%20drawbacks%20are%20examined.%20The%20usefulness%20and%20convenience%20of%20these%20products%20notwithstanding%2C%20there%20is%20a%20need%2C%20as%20expressed%20by%20the%20user%20community%2C%20for%20other%20products%2C%20i.e.%2C%20sub-surface%20planar%20and%20scalar%20fluxes%2C%20average%20cosine%2C%20spectral%20fluxes%20%28UV%20to%20visible%29%2C%20diurnal%20fluxes%2C%20absorbed%20fraction%20of%20PAR%20by%20live%20algae%20%28APAR%29%2C%20surface%20albedo%2C%20vertical%20attenuation%2C%20and%20heating%20rate%2C%20and%20for%20associating%20uncertainties%20to%20any%20product%20on%20a%20pixel-by-pixel%20basis.%20Methodologies%20to%20obtain%20the%20new%20products%20are%20qualitatively%20discussed%20in%20view%20of%20most%20recent%20scientific%20knowledge%20and%20current%20and%20future%20satellite%20missions%2C%20and%20specific%20algorithms%20are%20presented%20for%20some%20new%20products%2C%20namely%20sub-surface%20fluxes%20and%20average%20cosine.%20A%20strategy%20and%20roadmap%20%28short%2C%20medium%2C%20and%20long%20term%29%20for%20usage%20and%20development%20priorities%20is%20provided%2C%20taking%20into%20account%20needs%20and%20readiness%20level.%20Combining%20observations%20from%20satellites%20overpassing%20at%20different%20times%20and%20geostationary%20satellites%20should%20be%20pursued%20to%20improve%20the%20quality%20of%20daily-integrated%20radiation%20fields%2C%20and%20products%20should%20be%20generated%20without%20gaps%20to%20provide%20boundary%20conditions%20for%20general%20circulation%20and%20biogeochemical%20models.%20Examples%20of%20new%20products%2C%20i.e.%2C%20daily%20scalar%20PAR%20below%20the%20surface%2C%20daily%20average%20cosine%20for%20PAR%2C%20and%20sub-surface%20spectral%20scalar%20fluxes%20are%20presented.%20A%20procedure%20to%20estimate%20algorithm%20uncertainties%20in%20the%20total%20uncertainty%20budget%20for%20above-surface%20daily%20PAR%2C%20based%20on%20radiative%20simulations%20for%20expected%20situations%2C%20is%20described.%20In%20the%20future%2C%20space-borne%20lidars%20with%20ocean%20profiling%20capability%20offer%20the%20best%20hope%20for%20improving%20our%20knowledge%20of%20sub-surface%20fields.%20To%20maximize%20temporal%20coverage%2C%20space%20agencies%20should%20consider%20placing%20ocean-color%20instruments%20in%20L1%20orbit%2C%20where%20the%20sunlit%20part%20of%20the%20Earth%20can%20be%20frequently%20observed.%22%2C%22date%22%3A%222019%5C%2F02%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3389%5C%2Ffmars.2018.00003%22%2C%22ISSN%22%3A%22%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222022-09-09T21%3A28%3A57Z%22%7D%7D%2C%7B%22key%22%3A%22LP478RQP%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Betancur-Turizo%20et%20al.%22%2C%22parsedDate%22%3A%222018-09%22%2C%22numChildren%22%3A4%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3EBetancur-Turizo%2C%20S.%20P.%2C%20Gonzalez-Silvera%2C%20A.%2C%20Santamaria-del-Angel%2C%20E.%2C%20%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Frouin%2C%20R.%20%282018%29.%20Evaluation%20of%20semi-analytical%20algorithms%20to%20retrieve%20particulate%20and%20dissolved%20absorption%20coefficients%20in%20Gulf%20of%20California%20optically%20complex%20waters.%20%3Ci%3ERemote%20Sensing%3C%5C%2Fi%3E%2C%20%3Ci%3E10%3C%5C%2Fi%3E%289%29.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Frs10091443%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.3390%5C%2Frs10091443%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Evaluation%20of%20semi-analytical%20algorithms%20to%20retrieve%20particulate%20and%20dissolved%20absorption%20coefficients%20in%20Gulf%20of%20California%20optically%20complex%20waters%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22S.%20P.%22%2C%22lastName%22%3A%22Betancur-Turizo%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22A.%22%2C%22lastName%22%3A%22Gonzalez-Silvera%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22E.%22%2C%22lastName%22%3A%22Santamaria-del-Angel%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22J.%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22R.%22%2C%22lastName%22%3A%22Frouin%22%7D%5D%2C%22abstractNote%22%3A%22Two%20semi-analytical%20algorithms%2C%20Generalized%20Inherent%20Optical%20Property%20%28GIOP%29%20and%20Garver-Siegel-Maritorena%20%28GSM%29%2C%20were%20evaluated%20in%20terms%20of%20how%20well%20they%20reproduced%20the%20absorption%20coefficient%20of%20phytoplankton%20%28a%28ph%29%28lambda%29%29%20and%20dissolved%20and%20detrital%20organic%20matter%20%28a%28dg%29%28lambda%29%29%20at%20three%20wavelengths%20%28lambda%20of%20412%2C%20443%2C%20and%20488%20nm%29%20in%20a%20zone%20with%20optically%20complex%20waters%2C%20the%20Upper%20Gulf%20of%20California%20%28UGC%29%20and%20the%20Northern%20Gulf%20of%20California%20%28NGC%29.%20In%20the%20UGC%2C%20detritus%20determines%20most%20of%20the%20total%20light%20absorption%2C%20whereas%2C%20in%20the%20NGC%2C%20chromophoric%20dissolved%20organic%20material%20%28CDOM%29%20and%20phytoplankton%20dominate.%20Upon%20comparing%20the%20results%20of%20each%20model%20with%20a%20database%20assembled%20from%20four%20cruises%20done%20from%20spring%20to%20summer%20%28March%20through%20September%29%20between%202011%20and%202013%2C%20it%20was%20found%20that%20GIOP%20is%20a%20better%20estimator%20for%20a%28ph%29%28lambda%29%20than%20GSM%2C%20independently%20of%20the%20region.%20However%2C%20both%20algorithms%20underestimate%20in%20situ%20values%20in%20the%20NGC%2C%20whereas%20they%20overestimate%20them%20in%20the%20UGC.%20Errors%20are%20associated%20with%20the%20following%3A%20%28a%29%20the%20constant%20a%2A%28ph%29%28lambda%29%20value%20used%20by%20GSM%20and%20GIOP%20%280.055%20m%282%29%20mgChla%28-1%29%29%20is%20higher%20than%20the%20most%20frequent%20value%20observed%20in%20this%20study%27s%20data%20%280.03%20m%282%29%20mgChla%28-1%29%29%2C%20and%20%28b%29%20satellite-derived%20chlorophyll%20a%20concentration%20%28Chla%29%20is%20biased%20high%20compared%20with%20in%20situ%20Chla.%20GIOP%20gave%20also%20better%20results%20for%20the%20a%28dg%29%28lambda%29%20estimation%20than%20GSM%2C%20especially%20in%20the%20NGC.%20The%20spectral%20slope%20S-dg%20was%20identified%20as%20an%20important%20parameter%20for%20estimating%20a%28dg%29%28lambda%29%2C%20and%20this%20study%27s%20results%20indicated%20that%20the%20use%20of%20a%20fixed%20input%20value%20in%20models%20was%20not%20adequate.%20The%20evaluation%20confirms%20the%20lack%20of%20generality%20of%20algorithms%20like%20GIOP%20and%20GSM%2C%20whose%20reflectance%20model%20is%20too%20simplified%20to%20capture%20expected%20variability.%20Finally%2C%20a%20greater%20monitoring%20effort%20is%20suggested%20in%20the%20study%20area%20regarding%20the%20collection%20of%20in%20situ%20reflectance%20data%2C%20which%20would%20allow%20explaining%20the%20effects%20that%20detritus%20and%20CDOM%20may%20have%20on%20the%20semi-analytical%20reflectance%20inversions%2C%20as%20well%20as%20isolating%20the%20possible%20influence%20of%20the%20atmosphere%20on%20the%20satellite-derived%20water%20reflectance%20and%20Chla.%22%2C%22date%22%3A%222018%5C%2F09%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.3390%5C%2Frs10091443%22%2C%22ISSN%22%3A%222072-4292%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22STL3DR5U%22%2C%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222022-09-28T15%3A33%3A06Z%22%7D%7D%2C%7B%22key%22%3A%224X9JHXCI%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tan%20et%20al.%22%2C%22parsedDate%22%3A%222016-07%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20Cherkauer%2C%20K.%20A.%2C%20%26amp%3B%20Chaubey%2C%20I.%20%282016%29.%20Developing%20a%20Comprehensive%20Spectral-Biogeochemical%20Database%20of%20Midwestern%20Rivers%20for%20Water%20Quality%20Retrieval%20Using%20Remote%20Sensing%20Data%3A%20A%20Case%20Study%20of%20the%20Wabash%20River%20and%20Its%20Tributary%2C%20Indiana.%20%3Ci%3ERemote%20Sensing%3C%5C%2Fi%3E%2C%20%3Ci%3E8%3C%5C%2Fi%3E%286%29%2C%20517.%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Developing%20a%20Comprehensive%20Spectral-Biogeochemical%20Database%20of%20Midwestern%20Rivers%20for%20Water%20Quality%20Retrieval%20Using%20Remote%20Sensing%20Data%3A%20A%20Case%20Study%20of%20the%20Wabash%20River%20and%20Its%20Tributary%2C%20Indiana%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Keith%20A.%22%2C%22lastName%22%3A%22Cherkauer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Indrajeet%22%2C%22lastName%22%3A%22Chaubey%22%7D%5D%2C%22abstractNote%22%3A%22%22%2C%22date%22%3A%222016%5C%2F07%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%22%22%2C%22ISSN%22%3A%222072-4292%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222022-08-29T23%3A30%3A34Z%22%7D%7D%2C%7B%22key%22%3A%22G46NQ9ZL%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tan%20et%20al.%22%2C%22parsedDate%22%3A%222016-06%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20Cherkauer%2C%20K.%20A.%2C%20Chaubey%2C%20I.%2C%20Troy%2C%20C.%20D.%2C%20%26amp%3B%20Essig%2C%20R.%20%282016%29.%20Water%20quality%20estimation%20of%20River%20plumes%20in%20Southern%20Lake%20Michigan%20using%20Hyperion.%20%3Ci%3EJournal%20of%20Great%20Lakes%20Research%3C%5C%2Fi%3E%2C%20%3Ci%3E42%3C%5C%2Fi%3E%283%29%2C%20524%26%23x2013%3B535.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2Fhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jglr.2016.02.009%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2Fhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jglr.2016.02.009%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Water%20quality%20estimation%20of%20River%20plumes%20in%20Southern%20Lake%20Michigan%20using%20Hyperion%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Keith%20A.%22%2C%22lastName%22%3A%22Cherkauer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Indrajeet%22%2C%22lastName%22%3A%22Chaubey%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Cary%20D.%22%2C%22lastName%22%3A%22Troy%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Rebecca%22%2C%22lastName%22%3A%22Essig%22%7D%5D%2C%22abstractNote%22%3A%22This%20study%20focuses%20on%20the%20calibration%20of%20an%20existing%20bio-geo-optical%20model%20for%20studying%20the%20spatial%20variability%20of%20water%20quality%20parameters%20including%20chlorophyll%20%28CHL%29%2C%20non-algal%20particles%20%28NAP%29%2C%20and%20colored%20dissolved%20organic%20matter%20%28CDOM%29%20in%20episodic%20river%20plumes.%20The%20geographic%20focus%20is%20the%20St.%20Joseph%20River%20plume%20in%20southern%20Lake%20Michigan.%20One%20set%20of%20EO-1%20Hyperion%20imagery%20and%20one%20set%20of%20boat-based%20spectrometer%20measurements%20were%20successfully%20acquired%20to%20capture%20episodic%20plume%20events.%20Coincident%20water%20quality%20measurements%20were%20also%20collected%20during%20these%20plume%20events.%20In%20this%20study%2C%20a%20database%20of%20inherent%20optical%20properties%20%28IOPs%29%20measurements%20and%20spectral%20signatures%20was%20generated%20and%20used%20to%20calibrate%20the%20bio-geo-optical%20model.%20Field%20measured%20concentrations%20of%20NAP%20and%20CDOM%20at%2067%25%20of%20the%20sampled%20sites%20fall%20within%20one%20standard%20deviation%20of%20the%20retrieved%20means%20using%20the%20spectrometer%20measurements.%20The%20percentage%20of%20sites%2C%2088%25%2C%20is%20higher%20for%20the%20estimation%20of%20CHL%20concentrations.%20Despite%20the%20dynamic%20nature%20of%20the%20observed%20plume%20and%20the%20time%20lag%20during%20field%20sampling%2C%2077%25%20of%20the%20sampled%20sites%20show%20field%20measured%20CHL%20and%20NAP%20concentrations%20falling%20within%20one%20standard%20deviation%20of%20the%20Hyperion%20derived%20values.%20The%20spatial%20maps%20of%20water%20quality%20parameters%20generated%20from%20the%20Hyperion%20image%20provided%20a%20synoptic%20view%20of%20water%20quality%20conditions.%20Results%20show%20that%20concentrations%20of%20NAP%2C%20CHL%2C%20and%20CDOM%20were%20more%20than%20three%20times%20higher%20in%20conjunction%20with%20river%20outflow%2C%20and%20inside%20the%20river%20plumes%2C%20than%20in%20ambient%20water.%20It%20is%20concluded%20that%20the%20storm-initiated%20plume%20is%20a%20significant%20source%20of%20sediments%2C%20carbon%20and%20chlorophyll%20to%20Lake%20Michigan.%22%2C%22date%22%3A%222016%5C%2F06%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%22https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jglr.2016.02.009%22%2C%22ISSN%22%3A%220380-1330%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222022-08-29T23%3A30%3A35Z%22%7D%7D%2C%7B%22key%22%3A%22EDVKV8T2%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tan%20et%20al.%22%2C%22parsedDate%22%3A%222015-11%22%2C%22numChildren%22%3A2%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20Cherkauer%2C%20K.%20A.%2C%20%26amp%3B%20Chaubey%2C%20I.%20%282015%29.%20Using%20hyperspectral%20data%20to%20quantify%20water-quality%20parameters%20in%20the%20Wabash%20River%20and%20its%20tributaries%2C%20Indiana.%20%3Ci%3EInternational%20Journal%20of%20Remote%20Sensing%3C%5C%2Fi%3E%2C%20%3Ci%3E36%3C%5C%2Fi%3E%2821%29%2C%205466%26%23x2013%3B5484.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1080%5C%2F01431161.2015.1101654%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1080%5C%2F01431161.2015.1101654%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Using%20hyperspectral%20data%20to%20quantify%20water-quality%20parameters%20in%20the%20Wabash%20River%20and%20its%20tributaries%2C%20Indiana%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Keith%20A.%22%2C%22lastName%22%3A%22Cherkauer%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Indrajeet%22%2C%22lastName%22%3A%22Chaubey%22%7D%5D%2C%22abstractNote%22%3A%22A%20hand-held%20spectrometer%20was%20used%20to%20collect%20above-water%20spectral%20measurements%20for%20measuring%20optically%20active%20water-quality%20characteristics%20of%20the%20Wabash%20River%20and%20its%20tributaries%20in%20Indiana.%20Water%20sampling%20was%20undertaken%20concurrent%20with%20spectral%20measurements%20to%20estimate%20concentrations%20of%20chlorophyll%20%28chl%29%20and%20total%20suspended%20solids%20%28TSS%29.%20A%20method%20for%20removing%20sky%20and%20Sun%20glint%20from%20field%20spectra%20for%20turbid%20inland%20waters%20was%20developed%20and%20tested.%20Empirical%20models%20were%20then%20developed%20using%20the%20corrected%20field%20spectra%20and%20in%20situ%20chl%20and%20TSS%20data.%20A%20subset%20of%20the%20field%20measurements%20was%20used%20for%20model%20development%20and%20the%20rest%20for%20model%20validation.%20Spectral%20characteristics%20indicative%20of%20waters%20dominated%20by%20different%20inherent%20optical%20properties%20%28IOPs%29%20were%20identified%20and%20used%20as%20the%20basis%20of%20selecting%20bands%20for%20empirical%20model%20development.%20It%20was%20found%20that%20the%20ratio%20of%20the%20reflectance%20peak%20at%20the%20red%20edge%20%28704%5Cu00a0nm%29%20with%20the%20local%20minimum%20caused%20by%20chl%20absorption%20at%20677%5Cu00a0nm%20was%20a%20strong%20predictor%20of%20chl%20concentrations%20%28coefficient%20of%20determination%20%28R2%29%5Cu00a0%3D%5Cu00a00.95%29.%20The%20reflectance%20peak%20at%20704%5Cu00a0nm%20was%20also%20a%20good%20predictor%20for%20TSS%20estimation%20%28R2%5Cu00a0%3D%5Cu00a00.75%29.%20In%20addition%2C%20we%20also%20found%20that%20reflectance%20within%20the%20near-infrared%20%28NIR%29%20wavelengths%20%28700%3F890%5Cu00a0nm%29%20all%20showed%20a%20strong%20correlation%20%280.85%3F0.91%29%20with%20TSS%20concentrations%20and%20generated%20robust%20models.%20Results%20suggest%20that%20hyperspectral%20information%20provided%20by%20field%20spectrometer%20can%20be%20used%20to%20distinguish%20and%20quantify%20water-quality%20parameters%20under%20complex%20IOP%20conditions.%22%2C%22date%22%3A%222015%5C%2F11%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%2210.1080%5C%2F01431161.2015.1101654%22%2C%22ISSN%22%3A%220143-1161%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222022-08-29T23%3A30%3A35Z%22%7D%7D%2C%7B%22key%22%3A%22PXX7E4CY%22%2C%22library%22%3A%7B%22id%22%3A9129767%7D%2C%22meta%22%3A%7B%22creatorSummary%22%3A%22Tan%20and%20Cherkauer%22%2C%22parsedDate%22%3A%222013-01%22%2C%22numChildren%22%3A1%7D%2C%22bib%22%3A%22%3Cdiv%20class%3D%5C%22csl-bib-body%5C%22%20style%3D%5C%22line-height%3A%202%3B%20padding-left%3A%201em%3B%20text-indent%3A-1em%3B%5C%22%3E%5Cn%20%20%3Cdiv%20class%3D%5C%22csl-entry%5C%22%3E%3Cstrong%3ETan%2C%20J.%3C%5C%2Fstrong%3E%2C%20%26amp%3B%20Cherkauer%2C%20K.%20A.%20%282013%29.%20Assessing%20stream%20temperature%20variation%20in%20the%20Pacific%20Northwest%20using%20airborne%20thermal%20infrared%20remote%20sensing.%20%3Ci%3EJournal%20of%20Environmental%20Management%3C%5C%2Fi%3E%2C%20%3Ci%3E115%3C%5C%2Fi%3E%2C%20206%26%23x2013%3B216.%20%3Ca%20href%3D%27https%3A%5C%2F%5C%2Fdoi.org%5C%2Fhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jenvman.2012.10.012%27%3Ehttps%3A%5C%2F%5C%2Fdoi.org%5C%2Fhttps%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jenvman.2012.10.012%3C%5C%2Fa%3E%3C%5C%2Fdiv%3E%5Cn%3C%5C%2Fdiv%3E%22%2C%22data%22%3A%7B%22itemType%22%3A%22journalArticle%22%2C%22title%22%3A%22Assessing%20stream%20temperature%20variation%20in%20the%20Pacific%20Northwest%20using%20airborne%20thermal%20infrared%20remote%20sensing%22%2C%22creators%22%3A%5B%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Jing%22%2C%22lastName%22%3A%22Tan%22%7D%2C%7B%22creatorType%22%3A%22author%22%2C%22firstName%22%3A%22Keith%20A.%22%2C%22lastName%22%3A%22Cherkauer%22%7D%5D%2C%22abstractNote%22%3A%22The%20objective%20of%20this%20paper%20is%20to%20evaluate%20the%20temporal%20and%20spatial%20variability%20of%20stream%20temperatures%20and%20how%20stream%20temperatures%20are%20affected%20by%20land%20use%20through%20the%20use%20of%20airborne%20thermal%20infrared%20%28TIR%29%20imagery.%20Both%20five-meter%20and%20fifteen-meter%20MODIS%5C%2FASTER%20%28MASTER%29%20imagery%20were%20acquired%20along%20the%20main%20channel%20of%20the%20Green-Duwamish%20River%20in%20Washington%20State%2C%20U.S.%20in%20multiple%20straight%20line%20passes%20with%20image%20overlaps%20occurring%20at%20time%20intervals%20of%20between%203%20and%2045%5Cu00a0min.%20Five-%20and%20fifteen-meter%20data%20were%20collected%20on%20August%2025th%2C%202001%2C%20with%20a%20few%20additional%20five-meter%20images%20collected%20on%20August%2027th.%20Image%20overlaps%20were%20studied%20to%20evaluate%20the%20time%20dependence%20between%20acquisition%20time%20and%20observed%20water%20temperature.%20Temperature%20change%20between%20adjacent%20images%20over%20the%20course%20of%20a%20few%20minutes%20was%20found%20to%20be%20negligible%2C%20but%20became%20significant%20at%20times%20greater%20than%2045%5Cu00a0min%2C%20with%20an%20estimated%20increase%20in%20water%20temperature%20of%202%5Cu20133%5Cu00a0%5Cu00b0C%20between%20the%20first%20and%20last%20image%20collected%20for%20the%20complete%20five-meter%20resolution%20survey.%20Images%20captured%20from%20different%20days%20help%20identify%20persistent%20localized%20temperature%20differences.%20While%20accounting%20for%20temperature%20changes%20that%20occurred%20during%20the%20acquisition%20process%2C%20we%20still%20found%20that%20average%20stream%20reach%20temperatures%20increased%20with%20urbanization%2C%20while%20variability%20decreased.%20The%20same%20occurred%20in%20the%20immediate%20presence%20of%20a%20reservoir.%20This%20study%20suggests%20that%20urbanization%20affects%20stream%20temperature%20not%20only%20through%20the%20removal%20of%20riparian%20zone%20vegetation%2C%20but%20also%20through%20changes%20to%20sources%20in%20in-stream%20variability%20including%20the%20presence%20of%20rocks%2C%20woody%20debris%20and%20sandbars.%22%2C%22date%22%3A%222013%5C%2F01%22%2C%22language%22%3A%22%22%2C%22DOI%22%3A%22https%3A%5C%2F%5C%2Fdoi.org%5C%2F10.1016%5C%2Fj.jenvman.2012.10.012%22%2C%22ISSN%22%3A%220301-4797%22%2C%22url%22%3A%22%22%2C%22collections%22%3A%5B%22C3JRS8EW%22%5D%2C%22dateModified%22%3A%222022-08-29T23%3A30%3A34Z%22%7D%7D%5D%7D
Barnard, A., Boss, E., Haëntjens, N., Orrico, C., Chamberlain, P., Frouin, R., Mazloff, M., & Tan, J. (2024). A float-based Ocean color vicarious calibration program. Frontiers in Remote Sensing, 5, 1373540. https://doi.org/10.3389/frsen.2024.1373540
Chamberlain, P., Frouin, R. J., Tan, J., Mazloff, M., Barnard, A., Boss, E., Haëntjens, N., & Orrico, C. (2024). Selecting HyperNav deployment sites for calibrating and validating PACE ocean color observations. Frontiers in Remote Sensing, 5, 1333851. https://doi.org/10.3389/frsen.2024.1333851
Barnard, A., Boss, E., Haëntjens, N., Orrico, C., Frouin, R., Tan, J., Klumpp, J., Dewey, M., Walter, D., Mazloff, M., & Chamberlain, P. (2024). Design and verification of a highly accurate in-situ hyperspectral radiometric measurement system (HyperNav). Frontiers in Remote Sensing, 5, 1369769. https://doi.org/10.3389/frsen.2024.1369769
Tan, J., Frouin, R., Häentjens, N., Barnard, A., Boss, E., Chamberlain, P., Mazloff, M., & Orrico, C. (2024). Reconstructing hyper-spectral downwelling irradiance from multi-spectral measurements. Frontiers in Remote Sensing, 5, 1335627. https://doi.org/10.3389/frsen.2024.1335627
Begouen Demeaux, C., Boss, E., Tan, J., & Frouin, R. (2024). Algorithms to retrieve the spectral diffuse attenuation coefficient of light in the ocean from remote sensing. Optics Express, 32(2), 2507. https://doi.org/10.1364/OE.505497
Dupouy, C., Whiteside, A., Tan, J., Wattelez, G., Murakami, H., Andréoli, R., Lefèvre, J., Röttgers, R., Singh, A., & Frouin, R. (2023). A Review of Ocean Color Algorithms to Detect Trichodesmium Oceanic Blooms and Quantify Chlorophyll Concentration in Shallow Coral Lagoons of South Pacific Archipelagos. Remote Sensing, 15(21), 5194. https://doi.org/10.3390/rs15215194
Tan, J., Frouin, R., & Murakami, H. (2023). Feasibility of cross-calibrating ocean-color sensors in polar orbit using an intermediary geostationary sensor of reference. Frontiers in Remote Sensing, 4, 1072930. https://doi.org/10.3389/frsen.2023.1072930
Whiteside, A., Dupouy, C., Singh, A., Bani, P., Tan, J., & Frouin, R. (2023). Impact of ashes from the 2022 Tonga volcanic eruption on satellite ocean color signatures. Frontiers in Marine Science, 9, 1028022. https://doi.org/10.3389/fmars.2022.1028022
Lutz, V., Chidiak, M., Frouin, R., Negri, R., Dogliotti, A. I., Santamaria-del-Angel, E., Berghoff, C. F., Rojas, J., Filipello, C., Astor, Y., Segura, V., Gonzalez-Silvera, A., Escudero, L., Ledesma, J., Ueyoshi, K., Silva, R. I., Ruiz, M. G., Cozzolino, E., Allega, L., … Kampel, M. (2023). Regulation of CO2 by the sea in areas around Latin America in a context of climate change. Environmental Monitoring and Assessment, 195(3), 417. https://doi.org/10.1007/s10661-023-10997-1
Hwang, D. J., Frouin, R., Tan, J., Ahn, J. H., Choi, J. K., Moon, J. E., & Ryu, J. H. (2022). Algorithm to estimate daily PAR at the ocean surface from GOCI data: description and evaluation. Frontiers in Marine Science, 9, 15. https://doi.org/10.3389/fmars.2022.924967
Tan, J., Frouin, R., Jolivet, D., Compiegne, M., & Ramon, D. (2020). Evaluation of the NASA OBPG MERIS ocean surface PAR product in clear sky conditions. Optics Express, 28(22), 33157–33175. https://doi.org/10.1364/oe.396066
Castillo-Ramirez, A., Santamaria-del-Angel, E., Gonzalez-Silvera, A., Frouin, R., Sebastia-Frasquet, M. T., Tan, J., Lopez-Calderon, J., Sanchez-Velasco, L., & Enriquez-Paredes, L. (2020). A new algorithm to estimate diffuse attenuation coefficient from Secchi disk depth. Journal of Marine Science and Engineering, 8(8). https://doi.org/10.3390/jmse8080558
Tan, J., Frouin, R., Ramon, D., & Steinmetz, F. (2019). On the adequacy of representing water reflectance by semi-analytical models in ocean color remote sensing. Remote Sensing, 11(23). https://doi.org/10.3390/rs11232820
Frouin, R. J., Franz, B. A., Ibrahim, A., Knobelspiesse, K., Ahmad, Z., Cairns, B., Chowdhary, J., Dierssen, H. M., Tan, J., Dubovik, O., Huang, X., Davis, A. B., Kalashnikova, O., Thompson, D. R., Remer, L. A., Boss, E., Coddington, O., Deschamps, P. Y., Gao, B. C., … Zhai, P. W. (2019). Atmospheric correction of satellite ocean-color imagery during the PACE era. Frontiers in Earth Science, 7. https://doi.org/10.3389/feart.2019.00145
Tan, J., & Frouin, R. (2019). Seasonal and interannual variability of satellite-derived photosynthetically available radiation over the tropical oceans. Journal of Geophysical Research-Oceans, 124(5), 3073–3088. https://doi.org/10.1029/2019jc014942
Frouin, R., Ramon, D., Boss, E., Jolivet, D., Compiegne, M., Tan, J., Bouman, H., Jackson, T., Franz, B., Plett, T., & Sathyendranath, S. (2019). Satellite radiation products for ocean biology and biogeochemistry: Needs, state-of-the-art, gaps, development priorities, and opportunities. Frontiers in Marine Science, 5. https://doi.org/10.3389/fmars.2018.00003
Betancur-Turizo, S. P., Gonzalez-Silvera, A., Santamaria-del-Angel, E., Tan, J., & Frouin, R. (2018). Evaluation of semi-analytical algorithms to retrieve particulate and dissolved absorption coefficients in Gulf of California optically complex waters. Remote Sensing, 10(9). https://doi.org/10.3390/rs10091443
Tan, J., Cherkauer, K. A., & Chaubey, I. (2016). Developing a Comprehensive Spectral-Biogeochemical Database of Midwestern Rivers for Water Quality Retrieval Using Remote Sensing Data: A Case Study of the Wabash River and Its Tributary, Indiana. Remote Sensing, 8(6), 517.
Tan, J., Cherkauer, K. A., Chaubey, I., Troy, C. D., & Essig, R. (2016). Water quality estimation of River plumes in Southern Lake Michigan using Hyperion. Journal of Great Lakes Research, 42(3), 524–535. https://doi.org/https://doi.org/10.1016/j.jglr.2016.02.009
Tan, J., Cherkauer, K. A., & Chaubey, I. (2015). Using hyperspectral data to quantify water-quality parameters in the Wabash River and its tributaries, Indiana. International Journal of Remote Sensing, 36(21), 5466–5484. https://doi.org/10.1080/01431161.2015.1101654
Tan, J., & Cherkauer, K. A. (2013). Assessing stream temperature variation in the Pacific Northwest using airborne thermal infrared remote sensing. Journal of Environmental Management, 115, 206–216. https://doi.org/https://doi.org/10.1016/j.jenvman.2012.10.012